Assma.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плазменно дуговая резка металла при монтаже котлов

Виды резки металла. Новые и самые эффектные способы

В воздушно-дуговой резке используются угольные или графитовые электроды. Последние являются более прочными, отличаются меньшим электрическим сопротивлением (0,0008 Ом против 0,0032 Ом для кубика с ребром 1 см). Возможно использование угольных омедненных электродов.

В качестве источника питания при дуговой резке металла используются преобразователи постоянного тока или трансформаторы. Подача сжатого воздуха на резак идет от цеховой сети или передвижного компрессора. Давление должно находиться в пределах 0,4–0,6 МПа. Его больший уровень нецелесообразен, так как слишком сильный поток снижает стабильность электрической дуги.

В воздушно-дуговой резке, как правило, используется постоянный ток обратной полярности как более производительный. Применение же переменного целесообразно при мелких работах, например, удалении местных неровностей сварного шва. Использование в таких случаях постоянного тока прямой полярности приводит к увеличению зоны нагрева, что затрудняет устранение расплавленного металла.


Схема воздушно-дуговой резки металлов

I = K x d,

где d – диаметр электрода в мм, К – линейный коэффициент, составляющий 46–48 А/мм для угольных и 60–62 А/мм для графитовых электродов. Полученное число дает значение тока в амперах.

Плазменная резка — что это

Что такое плазменная резка? Это обработка металлических изделий, где резцом служит струя плазмы.

Плазма, представляет собой поток ионизированного газа, разогретого до нескольких тысяч градусов. Содержит частицы с положительным и отрицательным зарядом. Имеет квазинейтральные свойства. То есть, в бесконечно малом объёме, суммарный заряд уравновешивается и равен нулю.

Тем не менее, наличие свободных радикалов, означает, что плазма является проводником электричества. Сочетание высокой температуры, электропроводности и высокой скорости потока (больше скорости звука) позволило в прошлом веке разработать и создать для резки металла плазменное оборудование.

Принцип действия

  • рез прямого действия, или плазменно-дуговая резка металлов;
  • рез косвенным воздействием.

Резак прямого действия

Между резаком (катодный узел) и изделием (анод) зажигают электрическую дугу. Катод (электрод) помещён внутрь корпуса, имеющего сопло. Газ, под давлением, проходя мимо электрода, разогревается до высоких температур и ионизируется. Высокая скорость потока создаётся при прохождении сопла. Электродуга плавит металл. Раскалённый газ обеспечивает вывод из зоны нагрева.

Резак косвенного действия

Этот метод позволяет обрабатывать обычные металлы, но, и с малой электрической проводимостью, и диэлектрики. В отличие от предыдущей схемы, источник электроискры помещён в резаке. Поэтому, воздействие на обрабатываемые изделия оказывает только поток плазмы. Стоит такое оборудование значительно дороже, нежели модели прямого действия.

Оба вида резаков имеют общее научно-техническое название, — плазматрон (буквально, — генератор плазмы).

Виды и назначение плазморезов

Прежде чем понять, как выбрать плазморез, необходимо изучить существующие виды приборов. В зависимости от области применения они подразделяются:

  • Инверторные. Обладают способностью резать металл толщиной 30 мм.
  • Трансформаторные. Разрезают металл толщиной 80 мм.

Существует классификация в зависимости от контакта резака с деталью.


Они подразделяются:

  • Контактные. При работе необходим контакт плазмы с металлом. Толщина его может быть до 18 мм.
  • Бесконтактные. В этом случае металл может быть большой толщины и контакта с ним не требуется.

В зависимости от потребляемой энергии также есть свои разновидности. Это приборы:

  • Бытовые. Работают от сети 220 Вт.
  • Плазморез промышленный. Работает от трехфазной сети 380 Вт.

Аппарат для плазменной резки металлов CEA SHARK 155

CEA SHARK 155 сочетает в себе мощь и компактность, ему найдется применение в любых производственных работах высокой и средней сложности. Использование этого аппарата обеспечит отличное качество резки, которое будет соответствовать самым высоким стандартам. Высокое качество резки сохраняется даже на больших скоростях благодаря технологии HPC, которой обладает горелка SK 165. Функции Smart Start Transfer и Smart End Cutting обеспечат наиболее оптимальные параметры для начала и конца резки.

  • Горелка SK 165 с технологией высокопроизводительной резки;
  • Мощный, компактный и легкий, вес – всего 48 кг;
  • Отличное качество резания в сочетании с высокой производительностью;
  • Снижение эксплуатационных расходов;
  • Цифровой дисплей.
  • Электронное управление всеми параметрами резки;
  • Мощная система циркуляции воздуха ;
  • Возможность резки сетки и перфорированных листов металла;
  • Возможность контактной резки;
  • Вентилятор для охлаждения системы включается только при необходимости;
  • Стабильность параметров резки при перепадах напряжения питающей сети;
  • Металлический корпус и противоударная лицевая панель;
  • Панель управления, которую отлично видно с большого расстояния и под любыми углами;
  • Предохранитель на кнопке горелки для защиты от случайных активаций.

SMART START TRANSFER

Инновационная система с помощью которой возбуждение режущей дуги происходит постепенным переходом из пилотной дуги, что позволяет достичь оптимальных параметров резки и продлить срок службы расходных элементов.

SMART END CUTTING

В конце резки значение тока плавно снижается, что обеспечивает полное отделение отрезанной части и избавляет от необходимости отламывать неотрезанную часть детали.

Плазменная строжка представляет собой быстрый, экономичный и простой способ удаления металла по сравнению с традиционной строжкой угольным электродом. Это уменьшает выбросы дыма и шум, а так же зона строжки при этом отлично видна.

Читать еще:  Правильное удаление воздуха из системы отопления – варианты, как удалить воздух

Конструкция горелок SK

В горелках СЕА реализована оптимальная конструкция плазмотрона. В обычных горелках дуговой разряд получается посредством ударения электрода о корпус сопла под воздействием сжатого воздуха, а в горелках CEA этот контакт происходит внутри корпуса сопла ,что позволяет сохранить поверхность электрода и сопла целой и уберечь ее от обгорания.

Основные преимущества данной конструкции:

  • Увеличение срока службы расходных материалов;
  • Безопасная инициация дуги
  • Качество резания остается отличным в течении всего периода эксплуатации.

Технология высокопроизводительной резки (High Perfomance Cutting)

Технология высокопроизводительной резки HPC реализовывается путем использования радиальных и вихревых потоков газа относительно оси горения дуги, что позволяет получить плазменный луч очень высокой температуры, который обладает повышенной производительностью резки. Данная технология также позволяет избежать эффекта двойной дуги – последовательного формирования двух дуг между катодом и поверхностью заготовки, что является основной причиной повреждения сопла и нестабильности дуги.

Новые высокопроизводительные горелки SK обладают увеличенной мощностью резания, при этом обеспечивая минимальную ширину реза и область термического воздействия. В итоге получается чистый разрез с ровными кромками, без шлака и окалины.

  • Лучшее качество резания;
  • Высокая скорость резания;
  • Более узкие разрезы;
  • Увеличение срока службы расходных материалов.

CS – оригинальные запчасти

Знак CS – это гарантия того, что вы используете оригинальные запасные части и получите заявленные характеристики резки и продолжительности срока службы. Геометрия и размеры данных элементов являются результатом многолетних испытаний и исследований, они обеспечивают такие режимы резки, которые были предусмотрены проектировщиками. При использовании не оригинальных запчастей вы рискуете не только ухудшить качество резки, но и перегреть оборудование.

Использование не оригинальной продукции несет следующие риски:

  • Перегрев и повреждение горелки;
  • Низкая производительность и повреждение источника питания;
  • Ухудшение качества резания;
  • Нарушение безопасности оборудования.

Учитывая вышеизложенное, использование не оригинальных компонентов аннулирует всю гарантию и мы не несем ответственности за все происшествия и поломки, которые произошли по этой причине.

Стоимость доставки и порядок её оплаты согласовывается во время оформления заказа.

5. Преимущества и недостатки плазменной резки

Чтобы говорить о преимуществах плазменной резки и ее недостатках, нужно определиться с чем мы будем сравнивать. У плазменного раскроя есть три основных конкурента – газо-кислородная резка, лазерная резка и гидроабразивная резка. Каждый из четырех видов раскроя имеет свою специфику применения. Подробное сравнение мы привели в предыдущей статье, рекомендуем Вам с ней ознакомиться.

Здесь же мы распишем основные преимущества и недостатки плазменной резки с практической точки зрения предприятий, которые ее используют. Итак…

Преимущества плазменной резки

  • Раскрой металла от 0,5 до 50 мм;
  • Раскрой всех видов металлов (алюминий, медь, титан, нержавейка, сталь и т.д.);
  • Точность плазменной резки 0,25-0,35 мм;
  • Скорость раскроя тонких металлов до 7 м/мин, быстрый пробой металла;
  • Мобильность ручных плазменных аппаратов;
  • Высокая степень готовности деталей (минимальная очистка от шлака).

Недостатки плазменной резки

  • Относительно высокая стоимость качественных плазменных аппаратов;
  • Высокая стоимость расходных материалов (сопло, электрод, защитный экран);
  • Наличие минимальной конусности реза;

Вот, в общем-то, все основные моменты, которые нужно знать, если Вы планируете использовать плазменную резку металлов в своих задачах.

По всем вопросам мы с радостью проконсультируем Вас по телефону 8 (800) 500-33-04!

Остались вопросы? Задайте их нашим специалистам!

Отправьте заявку и наш менеджер свяжется с вами в течение 3 минут!

  • Компания
    • О компании
    • География продаж станков
    • Отзывы
    • Сертификаты
    • События
  • Продукция
    • Плазменные станки
    • Газовые станки
    • Лазерные станки
    • Галтовочные станки
  • Сервис
    • Доставка
    • Монтаж и пуско-наладка станков плазменной резки
    • Обучение сотрудников
    • Гарантия на станки
  • Информация
    • Фото
    • Видео станков
    • Выбор источника плазмы
    • Подготовка воздуха
    • Расходные материалы
    • Статьи по плазменной резке

© 2008-2021 ООО «ТеплоВентМаш» — производство станков плазменной, газовой и лазерной резки. Права защищены.

Ваша заявка принята

Наш менеджер свяжется с вами в ближайшее время!

Если вы авторизованы в WhatsApp через компьютер, можете воспользоваться кнопкой ниже

Если вы авторизованы в Viber через компьютер, можете воспользоваться кнопкой ниже

Если вы авторизованы в Telegram через компьютер, можете воспользоваться кнопкой ниже

Лучшие производители плазменного оборудования

Плазменная резка считается одной из самых высокотехнологичных технологий раскроя, поэтому оборудование пользуется большим спросом. Оно производится как зарубежными, так и отечественными производителями. Стоимость импортных станков очень высока, поэтому большинство фирм и крупных предприятий отдают предпочтение российским маркам.

Одной из лидирующих отечественных компаний по разработке и производству установок плазменной резки считается ООО «ПУРМ». Она выпускает все виды оборудования – от ручных инверторных и трансформаторных аппаратов до труборезов и полностью автоматизированных машин с числовым программным управлением.

Видео о применении установок:

Преимущества станков марки ПУРМ:

  • ориентированность на суровые условия эксплуатации;
  • высокая точность и чистота реза;
  • минимальное энергопотребление;
  • простое обслуживание и эксплуатация.

Запуск процесса резки

Не все системы работают одинаково. Во-первых, есть обычно более бюджетная версия, называемая высокочастотным контактом . Это недоступно для плазменных резаков с ЧПУ, потому что высокая частота может мешать работе современного оборудования и вызывать проблемы.

Читать еще:  Станок для поперечной резки металла

В этом методе используется искра высокого напряжения и высокой частоты. Возникновение искры происходит при соприкосновении плазменной горелки с металлом. Это замыкает цепь и создает искру, которая, в свою очередь, создает плазму.

Другой вариант — метод пилотной дуги . Во-первых, искра создается внутри горелки цепью высокого напряжения и низкого тока. Искра создает вспомогательную дугу, которая представляет собой небольшое количество плазмы.

Режущая дуга возникает, когда вспомогательная дуга входит в контакт с заготовкой. Теперь оператор может начать процесс резки.

Третий способ — использование подпружиненной головки плазмотрона . Если прижать резак к заготовке, возникает короткое замыкание, в результате чего начинает течь ток.

При снятии давления образуется вспомогательная дуга. Следующее такое же, как и в предыдущем методе. Это приводит к контакту дуги с заготовкой.

Основной принцип плазменной резки металла и её типы

Общий принцип всех плазменных установок одинаков. Различаются они по системе охлаждения, типа применяемого газа, конструкции электрода и типа используемой плазмы. Основном это:

  • Стандартная (или обычная) плазменная резка;
  • Плазменная резка с применением защитного газа;
  • Водно-инжекционная плазменная резка (с использованием воды).

Стандартная воздушно плазменная резка резка

Представляет собой установку с плазменной горелкой, которая использует один вид газа. Как правило, это сжатый воздух или азот. Все процессы происходят в сопле плазменной горелки. Не имеет дополнительного охлаждения сопла.

Плазменно дуговая резка с применением защитного газа

Использует два вида газа. Введение дополнительного газа в процесс плазменной резки, повышает качество реза, увеличивает мощность дуги.

Комбинации использования вторичного газа:

Для резки нержавеющей стали – азот, аргон и углекислый газ.

Для резки алюминия и его сплавов – аргон, азот углекислый газ.

Водно-инжекционная дуговая резка

В процессе резки применяет воду. Вода поступает в горелку и служит охлаждением не только для горелки, но и для качественного образования плазменной струи. Разка водно-инжекционным типом является самой качественной.

Точность и скорость резания

Точность и скорость резания не находятся в однозначной зависимости друг от друга. Если вести горелку слишком быстро, возможны частичные непрорезы. Если же, наоборот, задерживать ее на каких-либо участках, они будут перегреваться и может случиться прожог или термическая деформация.

Опытный и квалифицированный резчик выбирает скорость работы, исходя из материала заготовки и ее толщины. Он ведет горелку с постоянной скоростью, ровно и на постоянном расстоянии от детали.

Нормальной является конусность разреза от 3 до 10 о . Допускается также оплавление кромок в начале линии.

Кислородная резка

Кислородная резка основана на сгорании металла в струе технически чистого кислорода. Металл при резке нагревают пламенем, которое образуется при сгорании какого-либо горючего газа в кислороде. Кислород, сжигающий нагретый металл, называют режущим. В процессе резки струю режущего кислорода подают к месту реза отдельно от кислорода, идущего на образование горючей смеси для подогрева металла. Процесс сгорания разрезаемого металла распространяется на всю толщину, образующиеся окислы выдуваются из места реза струёй режущего кислорода.

Металл, подвергаемый резке кислородом, должен удовлетворять следующим требованиям: температура воспламенения металла в кислороде должна быть ниже температуры его плавления; окислы металла должны иметь температуру плавления ниже, чем температура плавления самого металла, и обладать хорошей жидкотекучестью; металл не должен иметь высокой теплопроводности. Хорошо поддаются резке низкоуглеродистые стали.

Для кислородной резки пригодны горючие газы и пары горючих жидкостей, дающие температуру пламени при сгорании в смеси с кислородом не менее 1800 гр. Цельсия. Особенно важную роль при резке имеет чистота кислорода. Для резки необходимо применять кислород с чистотой 98,5-99,5 %. С понижением чистоты кислорода очень сильно снижается производительность резки и увеличивается расход кислорода. Так при снижении чистоты с 99,5 до 97,5 % (т.е. на 2 %) — производительность снижается на 31 %, а расход кислорода увеличивается на 68,1 %.

Технология кислородной резки. При разделительной резке поверхность разрезаемого металла должна быть очищена от ржавчины, окалины, масла и других загрязнений. Разделительную резку обычно начинают с края листа. Вначале металл разогревают подогревающим пламенем, а затем пускают режущую струю кислорода и равномерно передвигают резак по контуру реза. От поверхности металла резак должен находиться на таком расстоянии, чтобы металл нагревался восстановительной зоной пламени, отстоящей от ядра на 1,5-2 мм, т.е. наиболее высокотемпературной точкой пламени подогрева. Для резки тонких листов (толщиной не более 8-10 мм) применяют пакетную резку. При этом листы плотно укладывают один на другой и сжимают струбцинами, однако, значительные воздушные зазоры между листами в пакете ухудшают резку.

На машинах МТР «Кристалл» применяется резак «Эффект-М». Особенность резака — наличие штуцера для сжатого воздуха, который, пройдя через внутреннюю полость кожуха, истекает через кольцевой зазор над мундштуком и создает колоколообразную завесу, что локализует распространение продуктов сгорания и защищает элементы конструкции машины от перегрева.

Параметры режимов резки низкоуглеродистой стали приведены ниже в таблице 1:

1. Толщина разрезаемого металла
5. Давление кислорода
6. Скорость резки
7. Расход кислорода
8. Расход пропана
9. Ширина реза
10. Расстояние до листа

Читать еще:  Слуховое окно на крыше: что это и; зачем

Воздушно-плазменная резка

Процесс плазменной резки основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод-катод, разрезаемый металл — анод). Сущность процесса заключается в местном расплавлении и выдувании расплавленного металла с образованием полости реза при перемещении плазменного резака относительно разрезаемого металла.

Для возбуждения рабочей дуги (электрод — разрезаемый металл), с помощью осциллятора зажигается вспомогательная дуга между электродом и соплом — так называемая дежурная дуга, которая выдувается из сопла пусковым воздухом в виде факела длиной 20-40 мм. Ток дежурной дуги 25 или 40-60 А, в зависимости от источника плазменной дуги. При касании факела дежурной дуги металла возникает режущая дуга — рабочая, и включается повышенный расход воздуха; дежурная дуга при этом автоматически отключается.

Применение способа воздушно-плазменной резки, при котором в качестве плазмообразующего газа используется сжатый воздух, открывает широкие возможности при раскрое низкоуглеродистых и легированных сталей, а также цветных металлов и их сплавов

Преимущества воздушно-плазменной резки по сравнению с механизированной кислородной и плазменной резкой в инертных газах следующие: простота процесса резки; применение недорогого плазмообразующего газа — воздуха; высокая чистота реза (при обработке углеродистых и низколегированных сталей); пониженная степень деформации; более устойчивый процесс, чем резка в водородосодержащих смесях.


Рис. 1 Схема подключения плазмотрона к аппарату.


Рис. 2 Фазы образования рабочей дуги
а — зарождение дежурной дуги; б — выдувание дежурной дуги из сопла до касания с поверхностью разрезаемого листа;
в — появление рабочей (режущей) дуги и проникновение через рез металла.

Технология воздушно-плазменной резки. Для обеспечения нормального процесса необходим рациональный выбор параметров режима. Параметрами режима являются: диаметр сопла, сила тока, напряжение дуги, скорость резки, расстояние между торцом сопла и изделием и расход воздуха. Форма и размеры соплового канала обуславливают свойства и параметры дуги. С уменьшением диаметра и увеличением длины канала возрастают скорость потока плазмы, концентрация энергии в дуге, её напряжение и режущая способность. Срок службы сопла и катода зависят от интенсивности их охлаждения (водой или воздухом), рациональных энергетических, технологических параметров и величины расхода воздуха.

При воздушно-плазменной резке сталей диапазон разрезаемых толщин может быть разделён на два — до 50 мм и выше. В первом диапазоне, когда необходима надёжность процесса при небольших скоростях резки, рекомендуемый ток 200-250 А. Увеличение силы тока до 300 А и выше приводит к возрастанию скорости резки в 1,5-2 раза. Повышение силы тока до 400 А не даёт существенного прироста скоростей резки металла толщиной до 50 мм. При резке металла толщиной более 50 мм следует применять силу тока от 400 А и выше. С увеличением толщины разрезаемого металла скорость резки быстро падает. Максимальные скорости резки и сила тока для различных материалов и толщины, выполненные на 400 амперной установке приведены в таблице ниже.

Скорость воздушно-плазменной резки в зависимости от толщины металла: таблица 2

Режимы. таблица 3

Режимы воздушно-плазменной резки металлов. таблица 4


Рис. 3 Области оптимальных режимов резки металлов для плазмотрона с воздушным охлаждением (ток 40А и 60А)


Рис. 4 Области оптимальных режимов для плазмотрона с воздушным охлаждением (ток 90А).


Рис. 5 Зависимость выбора диаметра сопла от тока плазмы.


Рис. 6 Рекомендуемые токи для пробивки отверстия.

Скорость воздушно-плазменной резки, по сравнению с газокислородной, возрастает в 2-3 раза (см. Рис. 7).


Рис. 7 Скорость резки углеродистой стали в зависимости от толщины металла и мощности дуги.
Пологая нижняя линия — газокислородная резка.

При воздушно-плазменной резке меди рекомендуется применять силу тока 400 А и выше. Замечено, что при резке меди с использованием воздуха во всём диапазоне толщины и токов образуется легко удаляемый грат.

Хорошего качества реза при резке алюминия, с использованием воздуха в качестве плазмообразующего газа, удаётся достигнуть лишь для небольших толщин (до 30 мм) на токах 200 А. Удаление грата с листов большой толщины затруднительно. Воздушно-плазменная резка алюминия может быть рекомендована лишь как разделительная при заготовке деталей, требующих последующей механической обработки. Припуск на обработку допускается не менее 3 мм.

В заключение

Плазменная резка — быстрый и эффективный способ нарезать металл толщиной до 200 мм. Она может применяться для любых материалов, обладающих электропроводностью: меди, стали, латуни, чугуна, титана, алюминия, сплавов. Принцип действия плазменного резака основан на плавлении металла тонкой струей ионизированного газа и сдувании расплавленного материала с области реза.

Оборудование для нарезки плазмой бывает ручное и механизированное; инверторное и трансформаторное; ручное, портальное и переносное. Несмотря на различия в тех или иных характеристиках, любое из перечисленных приспособлений состоит из источника питания, системы поджига дуги и плазмотрона. Зная принцип работы устройства, собрать генератор плазмы для резки металла можно в домашних условиях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector