Assma.ru

Ремонт и стройка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Производство деталей из металлических порошков

Металлические 3D-принтеры используют на крупных производствах. Они находят свое применение в конструкторских бюро, инженерных цехах и НИИ. В гражданских сферах принтеры по металлу ставят в медицинских центрах.

Технология аддитивной печати позволяет сделать сложные переплетенные конструкции в виде единой детали. Например, в 2020 году NASA сделало «космическую ткань». Материал напоминает по фактуре кольчугу с очень сложным внутренним рисунком. Разница между древним доспехом и современным материалом заключается в технологии производства. Кольчугу плели, сцепляя каждое звено вручную. Космическую ткань напечатали в один проход.

Металлические изделия, сделанные на 3D-принтере, ценят за их характеристики:

  1. Высокая прочность готовой детали. Показатели плотности выше, чем при литье металла, в 1,5 раза.
  2. Сложная геометрия. Можно печатать запутанные фигуры причудливой геометрии. Например, сделать высокопрочную цепь без точек сварки.
  3. Широкий выбор сплавов и материалов. От алюминия до титана.
  4. Шероховатая поверхность изделия. В некоторых случаях это плюс, а не минус.
  5. Нет напряжения в металле, чего практически невозможно добиться при литье.
  6. Большой спектр постобработки.

Отдельной строкой можно выделить себестоимость готовой детали. Для печати порошком не требуется специальная оснастка, как, например, для литья. Нужную деталь загружают в память программы, и через непродолжительное время она появляется из принтера.

Компактирование

Порошковая металлургия также предусматривает проведение процедуры, которая основана на получении полуфабрикатов в виде прутков и лент. После прессования можно получить практически готовое к применению изделие.

К особенностям процесса компактирования можно отнести нижеприведенные моменты:

  1. В качестве сырья при проведении рассматриваемого процесса применяется сыпучее вещество.
  2. После прохождения компактирования сыпучий порошок становится компактным материалом с пористой структурой. Прочность получаемого изделия приобретается в ходе проведения других процессов обработки.

Принцип порошковой металлургии

Рассматривая процесс прессования порошка, отметим применение следующих технологий:

  1. прокатывание;
  2. шликерное литье;
  3. изостатическое прессование за счет оказания давления газом или жидкостью;
  4. прессование с одной или обеих сторон при применении специальных металлических матриц;
  5. инжекционный метод.

Для того чтобы ускорить процесс компактирования, изделия порошок подвергается воздействию высокой температуры. В большинстве случаев расстояние между отдельными частицами уменьшается за счет воздействия высокого давления. Большой прочностью обладают порошки, изготавливаемые из мягких металлов.

Получение металлических порошков

Несмотря на разнообразие методов, является наиболее трудоёмкой и дорогой стадией технологического процесса [2] . Физические, химические и технологические свойства порошков, форма частиц зависят от способа их производства. Вот основные промышленные способы изготовления металлических порошков:

  1. Механическое измельчение металлов в вихревых, вибрационных и шаровых мельницах.
  2. Распыление расплавов (жидких металлов) сжатым воздухом или в среде инертных газов. Метод появился в 1960-х годах. Его достоинства — возможность эффективной очистки расплава от многих примесей, высокая производительность и экономичность процесса.
  3. Восстановление руды или окалины. Наиболее экономичный метод. Почти половину всего порошка железа получают восстановлением руды.
  4. Электролитическое осаждение металлов из растворов.
  5. Использование сильного тока, приложенного к стержню металла в вакууме. Применяется для производства порошкового алюминия.

В промышленных условиях специальные порошки получают также осаждением, науглероживанием, термической диссоциацией летучих соединений (карбонильный метод) и другими способами.

5 особенностей металлических порошков для 3D-печати

Одно из важных преимуществ технологии 3D-печати металлами – возможность создать изделие из практически любого сплава. Помимо стандартных металлов существует широкая номенклатура специальных сплавов – уникальных высокотехнологичных материалов, которые производятся под определенные задачи заказчика.

Наиболее прогрессивная и популярная из технологий 3D-печати металлами – селективное лазерное плавление (SLM/DMP). Она заключается в последовательном послойном сплавлении металлических порошков при помощи мощного излучения иттербиевого лазера.

Технология запатентована лидерами 3D-индустрии – компаниями SLM Solutions и 3D Systems. Металлические 3D-принтеры этих производителей, в зависимости от функциональных возможностей и решаемых задач, могут быть задействованы и как производственные машины для серийного изготовления, и как лабораторные установки с гибкими настройками и возможностью быстрой смены материалов для 3D-печати.

Оборудование:
SLM Solutions (SLM-технология): SLM 125, SLM 280, SLM 500, SLM 800;
3D Systems (DMP-технология): ProX DMP 100, ProX DMP 200, ProX DMP 300, ProX DMP 320, DMP 8500.

Основные преимущества 3D-печати металлами:

  • высокие показатели плотности: в 1,5 раза выше, чем при литье;
  • возможность создания миниатюрных и геометрически сложных объектов и других неповторимых форм в виде закрытых бионических структур;
  • широкий выбор металлических сплавов, как стандартных, так и специальных;
  • сокращение циклов производства и ускорение выхода готовой продукции.

Сферы применения:

  • авиакосмическая индустрия;
  • машиностроение;
  • автомобилестроение;
  • нефтегазовая отрасль;
  • электроника;
  • медицина;
  • пищевая промышленность;
  • исследования и экспериментальные работы в конструкторских бюро, научных и учебных центрах.

Виды металлов, применяемых в аддитивном производстве

Современные аддитивные технологии предполагают использование около двадцати протестированных и готовых к эксплуатации материалов, в их числе – инструментальные, нержавеющие, жароупорные сплавы, алюминиевые и титановые сплавы, медицинские кобальт-хром и титан.

Поскольку металлов очень много, и каждый из них обладает определенными свойствами, один металл можно заменить другим исходя из технологических задач. К примеру, если в технологической цепочке необходимо задействовать титановый сплав, то технолог сможет выбрать один из множества титановых сплавов с теми свойствами, которые нужны для производства конкретного изделия.

  • Нержавеющие сплавы: 17-4PH, AISI 410, AISI 304L, AISI 316L, AISI 904L
    В эту категорию входят сложнолегированные стали с содержанием хрома (не менее 12%). Оксид хрома образует на поверхности металла коррозионностойкую пленку, которая может разрушаться под воздействием механических повреждений или химических сред, но восстанавливается в результате реакции с кислородом. Нержавеющие сплавы применяются при производстве клапанов гидравлических прессов, арматуры крекинг-установок, пружин, сварной аппаратуры, работающей в агрессивных средах, и изделий, используемых при высоких температурах (+550…800°C).
  • Инструментальные сплавы: 1.2343, 1.2367, 1.2709
    Основное предназначение инструментальных сплавов – изготовление различных видов инструментов (режущих, измерительных, штамповых и др.), вкладок в пресс-формы при горячем деформировании конструкционных сталей и цветных сплавов на крупносерийном производстве, пресс-форм для литья под давлением сплавов алюминия, цинка и магния. Эти сплавы содержат как минимум 0,7% углерода и обладают повышенной твердостью, износостойкостью, вязкостью, теплопроводностью и прокаливаемостью.
  • Никелевые сплавы: Inconel 625, Inconel 718
    Никель обладает способностью растворять в себе многие другие металлы, сохраняя при этом пластичность, поэтому существует множество никелевых сплавов. Например, в соединении с хромом они широко применяются в авиационных двигателях, из них изготавливают рабочие и сопловые лопатки, диски ротора турбин, детали камеры сгорания и т.п. Наиболее жаропрочными являются литейные сложнолегированные сплавы на никелевой основе, которые выдерживают температуры до +1100°C в течение сотен и тысяч часов при высоких статических и динамических нагрузках.
  • Кобальт-хром: CoCr
    CoCr представляет собой высококачественный кобальт-хромовый сплав для модельного литья, соответствующий современным техническим требованиям. Благодаря отличным механическим свойствам он хорошо подходит для изготовления корпусов сложной геометрии в электронике, пищевом производстве, авиа-, ракето- и машиностроении, а также кламмерных протезов.
  • Цветные металлы: CuSn6
    CuSn6 – сплав из меди и 6% олова, который обладает высокими теплопроводящими свойствами и коррозионной стойкостью и идеален для создания уникальных систем охлаждения.
  • Алюминиевые сплавы: AlSi12
    Это наиболее дешевые из литейных сплавов. К их преимуществам относятся высокая коррозионная стойкость, жидкотекучесть, электро- и теплопроводность. В промышленности используются, как правило, для изготовления крупногабаритных тонкостенных отливок сложной формы.
  • Титановые сплавы: Ti6Al4V, Ti6Al7Nb
    Ti6Al4V – наиболее распространенный сплав титана с превосходными механическими свойствами. Считается самым прочным и жестким титановым сплавом, отличается особо высокой сложностью обработки. Имеет плотность 4500 кг/м³ и прочность на разрыв более 900 МПа. Сплав Ti6Al4V предоставляет неоспоримые преимущества в плане снижения веса изделий в таких отраслях, как аэрокосмическая промышленность, автомобилестроение и судостроение. Эти металлы применяются, в частности, при изготовлении вкладок в пресс-формы, турбинных лопаток, камер сгорания, а также изделий, предназначенных для работы при высоких температурах (до +1100°C).
Читать еще:  Противопожарное водоснабжение зданий

Схемы установки SLM Solutions (вверху) и 3D Systems (внизу)

Особенности металлических порошков

Вопросы безопасности при работе на металлических 3D-принтерах

Как известно, металлы, попадающие в человеческий организм в микроскопических дозах, полезны. В макродозах они несут опасность для здоровья – получить отравление металлами очень легко, а кроме того, порошки взрывоопасны. При дисперсности порошка от 4 микрон он проникает сквозь поры кожи, органы дыхания, зрения и т.д. В связи с этим при работе на металлических 3D-принтерах необходимо строго соблюдать технику безопасности. Для этого предусмотрена защитная спецодежда – костюм, перчатки и обувь. Аддитивные машины, как правило, комплектуются пылесосом для удаления основного порошка, однако и после его использования некоторая взвесь металлов остается.

Производители стремятся улучшить условия безопасности, и сейчас наблюдается тенденция по созданию на аддитивном производстве так называемых закрытых циклов, т.е. полностью герметичных помещений, за пределы которого порошок не попадает. Оператор работает в специальной одежде, которая затем утилизируется.

Потенциал 3D-печати металлами

Итак, мы выяснили, что современные технологии позволяют получить порошок для 3D-печати металлом с определенными свойствами для решения конкретных производственных задач. А так как распылению можно подвергнуть практически любые металлы, то и номенклатура металлических материалов для 3D-принтеров чрезвычайно обширна.

Достижения металлургии в полной мере реализуются в аддитивном производстве, позволяя использовать уникальные сплавы для изготовления геометрически сложных изделий повышенной точности, плотности и повторяемости. В то же время, внедрение металлических аддитивных установок имеет и сдерживающие факторы, главный из которых – высокая стоимость порошков.

3D-печать металлами обладает серьезным потенциалом для повышения эффективности производства во многих отраслях промышленности и используется все большим числом компаний и исследовательских организаций. Пример для всемирной индустрии показывают такие промышленные лидеры, как General Electric, Airbus, Boeing, Michelin, которые уже перешли от изготовления единичных металлических изделий к серийному аддитивному производству.

Преимущества и недостатки [ | ]

Благодаря структурным особенностям продукты порошковой металлургии более термостойки, лучше переносят циклические перепады температур и напряжений деформации, а также радиоактивного излучения.

Однако порошковая металлургия имеет и недостатки, сдерживающие её развитие: сравнительно высокая стоимость металлических порошков, необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий порошковой металлургии, невозможность изготовления в некоторых случаях заготовок больших размеров, необходимость использования чистых исходных порошков для получения чистых металлов.

Особенности металлических порошков

  1. Металл для аддитивных установок выпускается в виде мелкодисперсных сферических гранул с величиной зерна от 4 до 80 микрон. Этот показатель определяет толщину объекта, который будет выращен в аддитивной установке. При создании порошка задается величина и состав зерна, так как необходимо соблюсти определенное процентное соотношение крупных и мелких зерен. Таким образом определяется текучесть металла, проверяемая с помощью прибора Холла (воронки с калиброванным отверстием). Если у зерна будет слишком мелкая фракция, металл не будет течь через воронку и, соответственно, плохо подаваться на стол построения, а это напрямую влияет на равномерность получаемых слоев и качество выращиваемого изделия.

У каждой компании, производящей данный тип 3D-принтеров, свои требования к текучести в зависимости от принципа нанесения материала на платформу построения. В аддитивных установках SLM Solutions (технология SLM) металл на рабочий стол подается и сверху, из фидера (камеры с материалом), и переносится рекоутером. В этом случае текучесть очень важна для того, чтобы порошок поступал из фидера в рекоутер и слои наносились должным образом (см. схему построения изделий на рисунке выше).

Разным металлам требуется разная термообработка, и иногда для этого используются специально подогреваемые платформы. В процессе построения, при плавлении металла, вырабатывается большое количество тепла, которое нужно отводить. Роль радиаторов, отводящих тепло, выполняют поддержки, применяемые при построении изделий. В некоторых случаях сама деталь без поддержек приваривается к рабочему столу, как к радиатору.

Структура металлических изделий, полученных аддитивным способом, зависит как от технологии построения, так и от настроек оборудования. Ведущие производители добились плотности металла порядка 99,9% от теоретической. Наряду с селективным лазерным плавлением существуют и менее эффективные, уже устаревшие технологии, сходные с методом SLS, которые обеспечивают меньшую плотность.

  • Внутренняя структура металла – мелкозернистая. Если в дальнейшем мы собираемся уплотнить деталь, то есть воздействовать на нее физически, надо учитывать, что маленькое зерно сжать гораздо сложнее, чем большое. Но при этом мы очень близко подходим к прокатному металлу – т.е. к металлу, который уже уплотнили. Плотность изделий, напечатанных на 3D-принтере, на 10-15% ниже, чем при прокате, но примерно на 50% выше, чем у литейных металлов.
  • Читайте истории внедрения:

    Изготовление деталей из металлического порошка

    Eurobalt Engineering — предприятие порошковой металлургии. Мы принимаем заявки на производство деталей методом прессования и спекания. Благодаря современной технологической базе наша компания быстро и качественно справляется с изготовлением крупных партий данной продукции. Мы обеспечим строгий контроль за производственным процессом на всех его этапах, что гарантирует высокое качество изделий, соответствие их характеристик требованиям проектной документации.

    Особенности технологии прессования и спекания

    Технология прессования и спекания металлических порошков давно применяется в промышленности. Порошковая металлургия позволяет создавать детали сложной формы или с большим числом отверстий при минимальных потерях материала. Данная технология применяется при изготовлении фланцев, шестеренок и других элементов, которые входят в категорию спеченных изделий.

    Производственный процесс состоит из нескольких этапов:

    • Приготовление рабочей смеси, которая может состоять только из металлов или с добавлением других компонентов. Чтобы получить порошок, металл измельчают механическим способом, распыляют в расплавленном виде или используют методы химической реакции.
    • Формование заготовки методом холодного прессования.
    • Спекание смеси для создания монолитного изделия.

    Готовые спеченные детали калибруют, чтобы добиться идеальной геометрии и точности размеров. Также изделия подвергают дополнительной механической обработке, пропитывают смазкой.

    К достоинствам изделий, изготовленных по технологии формирования и спекания металлических порошков, относят повышенную прочность, устойчивость к деформации и температурным перепадам. Используя дополнительные компоненты при изготовлении порошковой смеси, можно увеличить твердость, коэффициент трения или другие параметры готовой детали. Данные свойства позволяют использовать детали в разных отраслях промышленности.

    Valge 13, 11415,
    Таллин, Эстония

    Рабочее время:
    Пн-Пт: 09:00-17:30
    Сб-Вс: выходной
    (или e-mail)

    Механическая обработка

    Механообработка подразумевает срезание металла с поверхности заготовки поэтапно. Комплекс используемых технологий (в том числе – задействование различных типов станков), позволяет:

    • придать детали любую нужную форму,
    • просверлить необходимое количество отверстий,
    • обеспечить ей эстетичный внешний вид путем шлифования и строгания.

    За счет этих плюсов прочие методы изготовления деталей, как правило, уступают механообработке.

    Читать еще:  Как сделать металлическую дверь из уголка своими руками

    Данный метод позволяет изготавливать изделия в небольших количествах. Это как раз тот случай, когда использовать другие технологии невыгодно. Минимальный процент брака при механообработке делает её отличным вариантом для производства высококачественных деталей.

    Механическая обработка деталей с использованием станков ЧПУ – одна из основных направлений . Специалисты нашей компании используют современное универсальное высокоточное оборудование, что гарантирует высокое качество готового продукта.

    Оборудование

    Чтобы эффективно заниматься переработкой металлолома, предприятие должно быть снабжено:

    • скрапными и гидравлическими ножницами;
    • гидравлическими прессами для брикетирования;
    • измельчителями;
    • дозаторами;
    • промышленными кранбалками;
    • плазменными резаками;
    • плавильными печами.

    Дополнительно понадобится электроинструментов для разрезания металла и спецтехника для перевозки лома, брикетов.

    Как работают 3D принтеры по металлу. Обзор SLM и DMLS технологий. Аддитивное производство. 3D печать металлом.

    SLM или DMLS: в чем разница?

    Всем привет, Друзья! С Вами 3DTool!

    Селективное лазерное плавление (SLM) и прямое лазерное спекание металла (DMLS) — это два процесса аддитивного производства, которые принадлежат к семейству 3D-печати, с использованием метода порошкового наслоения. Две этих технологии имеют много общего: обе используют лазер для выборочного плавления (или расплавления) частиц металлического порошка, связывая их вместе и создавая модель слой за слоем. Кроме того, материалы, используемые в обоих процессах, являются металлами в гранулированной форме.

    Различия между SLM и DMLS сводятся к основам процесса связывания частиц: SLM использует металлические порошки с одной температурой плавления и полностью плавит частицы, тогда как в DMLS порошок состоит из материалов с переменными точками плавления.

    В частности:
    SLM производит детали из одного металла, в то время как DMLS производит детали из металлических сплавов.
    И SLM, и DMLS технологии используются в промышленности для создания конечных инженерных продуктов. В этой статье мы будем использовать термин «металлическая 3D печать» для обобщения 2-х технологий. Так же опишем основные механизмы процесса изготовления, которые необходимы инженерам для понимания преимуществ и недостатков этих технологий.
    Существуют и другие технологические процессы для производства плотных металлических деталей, такие как электронно-лучевое плавление (EBM) и ультразвуковое аддитивное производство (UAM). Их доступность и распространение довольно ограничены, поэтому они не будут представлены в данной статье.

    Как происходит 3D печать металлом SLM или DMLS.

    Как работает 3D печать металлом? Основной процесс изготовления для SLM и DMLS очень похожи.

    1. Камера, в которой происходит печать, сначала заполняется инертным газом (например, аргоном), чтобы минимизировать окисление металлического порошка. Затем она нагревается до оптимальной рабочей температуры.
    2. Слой порошка распределяется по платформе, мощный лазер делает проходы по заданной траектории в программе, сплавляя металлические частицы вместе и создавая следующий слой.
    3. Когда процесс спекания завершен, платформа перемещается вниз на 1 слой. Далее наносится еще один тонкий слой металлического порошка. Процесс повторяется до тех пор, пока печать всей модели не будет завершена.

    Когда процесс печати завершен, металлический порошок уже имеет прочные связи в структуре. В отличие от процесса SLS, детали прикрепляются к платформе через опорные конструкции. Опора в 3D-печати металлом, создаётся из того же материала, что базовая деталь. Это условие необходимо для уменьшения деформаций, которые могут возникнуть из-за высоких температур обработки.
    Когда камера 3D принтера охлаждается до комнатной температуры, излишки порошка удаляются вручную, например щеткой. Затем детали как правило подвергаются термообработке, пока они еще прикреплены к платформе. Делается это для снятия любых остаточных напряжений. Далее с ними можно проводить дальнейшую обработку. Снятие детали с платформы происходит по средством спиливания.

    Схема работы 3D принтера по металлу.

    В SLM и DMLS почти все параметры процесса устанавливаются производителем. Высота слоя, используемого в 3D-печати металлами, варьируется от 20 до 50 микрон и зависит от свойств металлического порошка (текучести, гранулометрического состава, формы и т. д.).
    Базовый размер области печати на металлических 3D принтерах составляет 200 x 150 x 150 мм, но бывают и более большие размеры рабочего поля. Точность печати составляет от 50 — 100 микрон. По состоянию на 2020 год, стоимость 3D принтеров по металлу начинается от 150 000 долларов США. Например наша компания предлагает 3D принтеры по металлу от BLT.
    3D принтеры по металлу, могут использоваться для мелкосерийного производства, но возможности таких систем в 3D-печати, больше напоминают возможности серийного производства на машинах FDM или SLA.
    Металлический порошок в SLM и DMLS пригоден для вторичной переработки: обычно расходуется менее 5%. После каждого отпечатка неиспользованный порошок собирают и просеивают, а затем доливают свежим материалом до уровня, необходимого для следующего изготовления.
    Отходы в металлической печати, представляют из себя поддержки (опорные конструкции, без которых не удастся добиться успешного результата). При слишком большом обилии поддержек на изготавливаемых деталях, соответственно будет расти и стоимость всего производства.

    Адгезия между слоями.

    3D печать металлом на 3D принтерах BLT

    Металлические детали SLM и DMLS обладают практически изотропными механическими и термическими свойствами. Они твердые и имеют очень небольшую внутреннюю пористость (менее 0,2 % в состоянии после 3D печати и практически отсутствуют после обработки).
    Металлические печатные детали имеют более высокую прочность и твердость и часто являются более гибкими, чем детали, изготовленные традиционным способом. Тем не менее, такой металл быстрее становится «уставшим».

    Структура поддержки 3D модели и ориентация детали на рабочей платформе.

    Опорные конструкции всегда требуются при печати металлом, из-за очень высокой температуры обработки. Они обычно строятся с использованием решетчатого узора.

    Поддержки в металлической 3D печати выполняют 3 функции:

    • Они делают основание для создания первого слоя детали.
    • Они закрепляют деталь на платформе и предотвращают её деформацию.
    • Они действуют как теплоотвод, отводя тепло от модели.

    Детали часто ориентированы под углом. Однако это увеличит и объем необходимых поддержек, время печати, и в конечном итоге общие затраты.
    Деформация также может быть сведена к минимуму с помощью шаблонов лазерного спекания. Эта стратегия предотвращает накопление остаточных напряжений в любом конкретном направлении и добавляет характерную текстуру поверхности детали.

    Поскольку стоимость металлической печати очень большая, для прогнозирования поведения детали во время обработки часто используются программные симуляторы. Это алгоритмы оптимизации топологии в прочем используются не только для увеличения механических характеристик и создания облегченных частей, но и для того, чтобы свести к минимуму потребности в поддержках и вероятности искривления детали.

    Полые секции и легкие конструкции.

    В отличие от процессов плавления с полимерным порошком, таких как SLS, большие полые секции обычно не используются в металлической печати, так как поддержки будет очень сложно удалить, если вообще возможно.
    Для внутренних каналов больше, чем Ø 8 мм, рекомендуется использовать алмазные или каплевидные поперечные сечения вместо круглых, так как они не требуют построения поддержек. Более подробные рекомендации по проектированию SLM и DMLS можно найти в других статьях посвященных данной тематике.

    В качестве альтернативы полым секциям, детали могут быть выполнены с оболочкой и сердечниками, которые в свою очередь обрабатываются с использованием различной мощности лазера и скорости его проходов, что приводит к различным свойствам материала. Использование оболочки и сердечников очень полезно при изготовлении деталей с большим сплошным сечением, поскольку это значительно сокращает время печати и уменьшает вероятность деформации.

    Читать еще:  Автомасла и все, что нужно знать о моторных маслах

    Использование решетчатой структуры является распространенной стратегией в 3D-печати металлом, для уменьшения веса детали. Алгоритмы оптимизации топологии также могут помочь в разработке органичных легких форм.

    Расходные материалы для 3D печати металлом.

    Технологии SLM и DMLS могут производить детали из широкого спектра металлов и металлических сплавов, включая алюминий, нержавеющую сталь, титан, кобальт, хром и инконель. Эти материалы обеспечивают потребности большинства промышленных применений, от аэрокосмической отрасли до медицинской. Драгоценные металлы, такие как золото, платина, палладий и серебро, также могут быть обработаны, но их применение носит незначительный характер и в основном ограничивается изготовлением ювелирных изделий.

    Стоимость металлического порошка очень высока. Например, килограмм порошка из нержавеющей стали 316 стоит примерно 350-450 долларов. По этой причине минимизация объема детали и необходимость поддержек является ключом к поддержанию оптимальной стоимости производства.
    Основным преимуществом металлической 3D-печати является ее совместимость с высокопрочными материалами, такими как никелевые или кобальт-хромовые супер сплавы, которые очень трудно обрабатывать традиционными методами. За счет использования металлической 3D-печати для создания детали практически чистой формы — можно достичь значительной экономии средств и времени. В последствии такая деталь может быть подвергнута обработке до очень высокого качества поверхности.

    Постобработка металла.

    Различные методы пост. обработки используются для улучшения механических свойств, точности и внешнего вида металлических печатных изделий.
    Обязательные этапы последующей обработки включают удаление рассыпного порошка и опорных конструкций, в то время как термическая обработка (термический отжиг) обычно используется для снятия остаточных напряжений и улучшения механических свойств детали.

    Обработка на станках ЧПУ может быть использована для критически важных элементов (таких как отверстия или резьбы). Пескоструйная обработка, металлизация, полировка и микрообработка могут улучшить качество поверхности и усталостную прочность металлической печатной детали.

    Преимущества и недостатки металлической 3D печати.

    Плюсы:

    1. 3D печать с использованием металла, может быть использована для изготовления сложных деталей на заказ, с геометрией, которую традиционные методы производства не смогут обеспечить.
    2. Металлические 3D печатные детали могут быть оптимизированы, чтобы увеличить их производительность при минимальном весе.
    3. Металлические 3D-печатные детали имеют отличные физические свойства, 3D принтеры по металлу могут печатать большим перечнем металлов и сплавов. Включают в себя трудно обрабатываемые материалы и металлические суперсплавы.

    Минусы:

    1. Затраты на изготовление, связанные с металлической 3D-печатью, высоки. Стоимость расходного материала от 500$ за 1 кг.
    2. Размер рабочей области в 3D принтерах по металлу ограничен.

    Технологии объемной печати металлом

    На сегодняшний день наибольшее распространение получили 3 основные технологии металлической 3D-печати:

    1. Выборочное лазерное спекание (SLS)
    2. Прямое лазерное спекание (DMLS)
    3. Выборочная электронно-лучевая плавка (EBM)

    Разумеется, это далеко не единственные методы адаптивного производства металлоизделий. Дополнительно еще можно выделить метод прямого лазерного адаптивного построения (CLAD), а также произвольной электро-лучевой плавки (EBF). Но данные методы 3D-печати имеют весьма узкую специализацию и не находят сегодня широкого распространения.

    Какие технологии печати металлом еще существуют.

    Выборочное лазерное спекание (SLS)

    Метод выборочного лазерного спекания позволяет получать комбинированные заготовки из металла и керамики или металла и полимеров. Сама металлическая структура изделия будет пористой.

    Объемная печать металлов SLS отлично подходит для изготовления:

    1. Макетов
    2. Наглядных моделей
    3. Прототипов

    В данном случае заказчик металлоизделия сможет сэкономить уйму времени, которое обычно уходит на создание пресс-форм и матриц. Уже через сутки после заказа можно подержать в руках и обсудить преимущества и недостатки изделия, на которое могут возлагаться большие надежды.

    3D-принтеры с технологией выборочного лазерного спекания используют лазерный излучатель минимальной мощности. Основной нагрев осуществляется вспомогательным источником, который доводит температуру рабочей камеры практически до температуры плавки металлического порошка.

    Если не говорить за промышленные нужды, технология выборочного лазерного спекания нашла широчайшее применение в ювелирном деле и производстве сувенирной продукции.

    Прямое лазерное спекание (DMLS)

    Объемная металлическая печать методом прямого лазерного спекания рассчитана на применение чистого металлического порошка, без глины и полимеров. 3D-принтеры DMLS отличаются от SLS использованием более мощной лазерной головки. В данном случае основной нагрев металла создается при помощи лазерного излучения.

    Да, металлоизделия, полученные методом DMLS являются более прочными, чем при SLS-производстве. Но все же это тот же пористый металл, правда с более плотной структурой.
    Прямое лазерное спекание слабо подходит для создания производственных деталей. Но что касается изготовления прототипов и концептов, технология DMLS является одной из лучших.

    Дополнительно 3D-печать металлом по методу прямого лазерного спекания рекомендуется в тех случаях, когда на металлоизделие не будет воздействовать высокая механическая нагрузка. Это значит, что металлические детали, созданные методом DMLS, нельзя использовать в двигателях и аналогичных устройствах. Но никто не запрещает применять такие металлоизделия в ювелирном деле, при изготовлении спортивного инвентаря и туристической экипировки, а также во многих других сферах.

    Принтеры для 3D-печати металлом с технологией DMLS стоят дороже аналогичных по производительности SLS-моделей. Конечно, при использовании такой печати нужно будет больше тратиться на заказ расходных материалов.

    Выборочная электронно-лучевая плавка (EBM)

    Профессиональная 3D-печать металлом начинается с использования выборочной электронно-лучевой плавки. Технология EBM предполагает работу с чистым металлическим порошком. В результате печати получается цельное хорошо структурированное изделие, которое мало чем уступает полностью литым деталям.

    На сегодняшний день 3D-принтеры по металлу с технологией EBM выпускает лишь шведская компания Arcam. В принтерах этого типа лазерная головка заменена электронно-лучевой трубкой.
    Электронно-лучевая трубка имеет немало преимуществ по сравнению с излучателями лазерного типа:

    1. Отсутствует хрупкая система зеркал
    2. Повышенная мощность
    3. Увеличенная скорость

    В принтерах EBM практически весь нагрев металла берет на себя электронно-лучевая трубка. Главным преимуществом данной технологии является отсутствие хрупкой системы зеркал.

    Работа принтера с лазером строится с учетом бережного перемещения электромеханической головки.

    У электронно-лучевой трубки нет каких-то ограничений на скорость перемещения. Такой излучатель в разы быстрее любого из лазерных аналогов.

    Объемная металлическая печать методом EBM нашла необычайно широкое применение в производстве методом быстрого прототипирования. На подобном принтере можно печатать не только прототипы и концепты. EBM позволяет изготавливать практически полностью готовые к использованию детали для нужд производства.

    Таким металлоизделиям хватает прочностных характеристик, чтобы использоваться в составе двигателей, редукторов и прочих механизмов, которые подвергаются высоким нагрузкам.

    Дополнительно выборочная электронно-лучевая плавка часто используется при изготовлении металлических имплантов и других изделий медицинского назначения. Данный тип принтеров является на сегодняшний день одним из немногих, кто способен печатать титановым сплавом.

    На сегодняшний день принтеры с выборочной электронно-лучевой плавкой чаще всего используются в сфере массового производства. Благодаря принтерам по металлу можно существенно упростить производственный процесс, отказавшись от литьевого процесса, а также черновой и получистовой металлообработки. Это не говоря уже про услуги инженерной и конструкторской служб, а также отдела контроля качества.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector