Допустимый прогиб металлической балки
Проверка прогибов стальной балки
При расчете стальных балок по II-й ГПС (по прогибам) необходимо создавать раскрепления для прогибов:
Информация из справки LIRA SAPR (СправкаПояснения СтальПроверки прогибов):
Проверка прогиба осуществляется сопоставлением реально определенного относительного прогиба (L/f) с максимально возможным для данного конструктивного элемента прогибом.
В данной версии проверка выполняется только для балок на основании состава загружений во всех сочетаниях. Учитываются коэффициенты надежности по нагрузке (заданные при формировании РСУ в среде ПК ЛИРА-САПР) и коэффициенты сочетания.
Перемещения, вызванные загружениями с долей длительности 0, в данном расчете не используются.
Прогибы находятся для каждого сечения на основании распределения MY1, MZ1, QY1, QZ1 по длине элемента. Соответственно, увеличение количества расчетных сечений способствует более точному определению прогибов (особенно, если воздействуют сосредоточенные силовые факторы).
В режиме локального расчета элемента (см. справочную систему СТК-САПР) имеется возможность расчета прогибов по огибающим эпюрам изгибающего момента в запас. Это может потребоваться, когда редактируются расчетные сочетания усилий (или нагрузок) и теряется связь с результатами расчета на ПК ЛИРА-САПР основной схемы.
На приведенном фрагменте показан механизм определения прогибов (они обозначены как di и dk) в конструктивном элементе с наложенными раскреплениями на элементы.
Если раскрепления не наложены, то прогиб принимается равным полному расстоянию до оси X.
Пример расчета однопролетной балки
Согласно нормативной документации прогиб определяется от действия нормативных нагрузок. Поскольку в LIRA SAPR все нагрузки прикладываются к узлам и элементам их расчётными значениями, при определении прогибов программа определяет нормативное значение нагрузок путём деления их на коэффициент надёжности.
Посмотреть какие приняты коэффициенты надёжности, а также ввести их вручную, если это необходимо, можно в окне параметров расчёта.
Подробнее о корректировке коэффициентов надёжности для расчета прогибов вручную читайте в статье «Коэффициенты к временным нагрузкам при проверке прогиба»
Предельно допустимый L/200=6000/200=30мм
Без задания раскреплений (по абсолютному перемещению узлов балки):
((39,8мм/ к-т надежности по нагрузке)/ 30мм))*100%=((39,8/1,1)/30)*100%=120,6%
С заданием раскреплений (по относительному перемещению узлов балки за вычетом перемещений опорных узлов):
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%
Ручной ввод расчётной длины балки для расчёта прогибов
В диалоговом окне задания характеристик расчёта стальной балки присутствует группа параметров Расчёт по прогибу.
Информация из справки ЛИРА САПР:
Расчет по прогибу – данные для расчета прогиба. Длина пролета авто – вычисляется по положению раскреплений. Длина пролета точно – длина пролета при расчете приравнивается этому числу.
Рассмотрим раму из предыдущего примера, только теперь раскрепления для прогибов назначим для всех конструкций, а расчётные длины будем для первого случая задавать автоматическим способом, а для второго ручным.
Предельно допустимый прогиб при длине 6 м L/200=6000/200=30мм
Предельно допустимый прогиб при длине 4 м L/200=4000/200=20мм
Проценты использования по предельному прогибу
Длина балки 6 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/30)*100%=92,9%
Длина балки 4 м:
((39,8мм-9,14)/ к-т надежности по нагрузке)/30мм))*100%=(((39,8-9,14)/1,1)/20)*100%=139,4%
Расчёт прогибов стрельчатой арки
Пример — рама переменного сечения (РПС) пролётом 18 м. Соединение полурам в коньке — шарнирное, опирание полурам на фундамент — шарнирное.
При этом в параметрах «Дополнительные характеристики» необходимо указать вручную пролет, с которым программа будет сравнивать прогиб (автоматическое определение пролета возможно только для линейных балок, где все конечные элементы (КЭ) конструктивного элемента (КоЭ) лежат на одной оси):
Результаты определения прогибов в СТК-САПР:
Предельно допустимый L/200=17664/200=88.32 мм
Без задания раскреплений (по абсолютному значению на эпюре прогибов fz):
96.7/17644=1/182 — совпадает с результатом расчёта элемента №2
С заданием раскреплений (по относительному значению на эпюре прогибов fz):
(96.7-(-6.46))/17644=1/171 — совпадает с результатом расчёта элемента №4
Без задания раскреплений (по абсолютному значению перемещений узлов):
99.8/17644=1/177 — не совпадает ни с чем
Расчёт прогибов цилиндрической арки
Пример – цилиндрическая арка пролётом 18 м, стрелой подъёма f = 9 м. Соединение всех элементов между собой — жёсткое, опирание на фундамент — шарнирное.
Нагрузки на арку приложены их расчётными значениями. Значения нагрузок для определения прогибов принимаются согласно СП 20.13330.2016 Нагрузки и воздействия, таблица Д.1 Приложения Д. В данном примере арка является конструкцией покрытия, прогиб которой должен определяться от постоянных и длительных нагрузок (п.2 табл. Д.1). Для визуализации перемещений от нормативных значений нагрузок, необходимо создать особое РСН с нормативными длительными значениями нагрузок. Нагрузки в данном РСН нужно поделить на коэффициент надёжности, с учётом длительности. На конструкцию действуют два загружения:
Загружение 1 — постоянное, коэффициент надёжности 1.1;
Загружение 2 — кратковременное, коэффициент надёжности 1.2, доля длительности 0.35;
Вычислим коэффициенты для перехода к нормативным значениям
Загружение 1 Kn=1/1.1=0.91;
Загружение 2 Kn=1/1.2*0.35=0.292
Предельно допустимый прогиб L/200=18000/200=90 мм
Фактический прогиб (по абсолютному значению перемещений узлов): 32.2/18000=1/559 – меньше предельно допустимого значения.
Общие сведения
Балка является конструкционным элементом, представляющим собой стержень, на который девствуют силы в направлении перпендикулярно его оси. Под воздействием этих сил любые балки, в том числе и деревянные,деформируются.
Незначительный прогиб является вполне допустимым явлением. К примеру, при ходьбе по деревянному полу мы зачастую ощущаем как он незначительно пружинит. Но если прогиб превышает допустимые значения, то это может привести к поломке детали.
Допустимой считается деформация, которая соответствует следующим требованиям:
- Не превышает расчетные значения.
- Не мешает комфортной эксплуатации дома.
Чтобы узнать насколько будет деформироваться деталь в том или ином случае, необходимо выполнить некоторые расчеты на жесткость и прочность.Следует отметить, что подобными работами обычно занимаются инженеры-строители. Однако в частном строительстве, ознакомившись с некоторыми формулами, их можно выполнить самостоятельно.
Незначительный прогиб перекрытий допускается
Надо сказать, что расчет прогиба деревянной балки является очень ответственной работой, ведь любая постройка должна соответствовать определенным требованиям прочности. Поэтому балки должны обладать определенной устойчивостью и жесткостью, чтобы конструкция с определенным запасом по прочности выдерживала запланированные нагрузки.
Прочность и жесткость балки
Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.
Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.
Существует два основных метода расчета прочности и жесткости:
- Простой. При использовании данного метода применяется увеличительный коэффициент.
- Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.
Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.
Пример расчета деревянной балки перекрытия.
Расчет выполняется в соответствии со СНиП II-25-80 ( СП 64.13330.2011) «Деревянные конструкции» [1] и применением таблиц [2].
Исходные данные.
Требуется рассчитать балку междуэтажного перекрытия над первым этажом в частном доме.
Материал — дуб 2 сорта.
Срок службы конструкций — от 50 до 100 лет.
Состав балки — цельная порода (не клееная).
Шаг балок — 800 мм;
Длина пролета — 5 м (5 000 мм);
Пропитка антипиренами под давлением — не предусмотрена.
Расчетная нагрузка на перекрытие — 400 кг/м2; на балку — qр = 400·0,8 = 320 кг/м.
Нормативная нагрузка на перекрытие — 400/1,1 = 364 кг/м2; на балку — qн = 364·0,8 = 292 кг/м.
Расчет.
1) Подбор расчетной схемы.
Так как балка опирается на две стены, т.е. она шарнирно оперта и нагружена равномерно-распределенной нагрузкой, то расчетная схема будет выглядеть следующим образом:
2) Расчет по прочности.
Определяем максимальный изгибающий момент для данной расчетной схемы:
Мmax = qp·L 2 /8 = 320·5 2 /8 = 1000 кг·м = 100000 кг·см,
где: qp — расчетная нагрузка на балку;
L — длина пролета.
Определяем требуемый момент сопротивления деревянной балки:
где: R = Rи·mп·mд·mв·mт·γсc = 130·1,3·0,8·1·1·0,9 = 121,68 кг/см 2 — расчетное сопротивление древесины, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СНиП [1] — таблицы 1 [2] и поправочных коэффициентов:
mп = 1,3 — коэффициент перехода для других пород древесины, в данном случае принятый для дуба (таблица 7 [2]).
mд = 0,8 — поправочный коэффициент принимаемый в соответствии с п.5.2. [1], вводится в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок.
mв = 1 — коэффициент условий работы (таблица 2 [2]).
mт = 1 — температурный коэффициент, принят 1 при условии, что температура помещения не превышает +35 °С.
γсс = 0,9 — коэффициент срока службы древесины, подбирается в зависимости от того, сколько времени вы собираетесь эксплуатировать конструкции (таблица 8 [2]).
γн/о = 1,05 — коэффициент класса ответственности. Принимается по таблице 6 [2] с учетом, что класс ответственности здания I.
В случае глубокой пропитки древесины антипиренами к этим коэффициентам добавился бы еще один: ma = 0.9.
С остальными менее важными коэффициентами вы можете ознакомится в п.5.2 СП 64.13330.2011.
Примечание: перечисленные таблицы вы можете найти здесь.
Определение минимально допустимого сечения балки:
Так как чаще всего деревянные балки перекрытия имеют ширину 5 см, то мы будем находить минимально допустимую высоту балки по следующей формуле:
h = √(6Wтреб/b) = √(6·862,92/5) = 32,2 см.
Формула подобрана из условия Wбалки = b·h 2 /6. Получившийся результат нас не удовлетворяет, так как перекрытие толщиной более 32 см никуда не годится. Поэтому увеличиваем ширину балки до 10 см.
h = √(6Wтреб/b) = √(6·862,92/10) = 22,8 см.
Принятое сечение балки: bxh = 10×25 см.
3) Расчет по прогибу.
Здесь мы находим прогиб балки и сравниваем его с максимально допустимым.
Определяем прогиб принятой балки по формуле соответствующей принятой расчетной схеме:
f = (5·qн·L 4 )/(384·E·J) = (5·2,92·500 4 )/(384·100000·13020,83) = 1,83 см
где: qн = 2,92 кг/cм — нормативная нагрузка на балку;
L = 5 м- длина пролета;
Е = 100000 кг/см2 — модуль упругости. Принимается равным в соответствии с п.5.3 СП 64.13330.2011 вдоль волокон 100000 кг/см2 и 4000 кг/см 2 поперек волокон не взирая на породы при расчете по второй группе предельных состояний. Но справедливости ради нужно отметить, что модуль упругости в зависимости от влажности, наличия пропиток и длительности нагрузок только у сосны может колебаться от 60000 до 110000 кг/см2. Поэтому, если вы хотите перестраховаться, то можете взять минимальный модуль упругости.
J = b·h 3 /12 = 10·25 3 /12 = 13020,83 см 4 — момент инерции для доски прямоугольного сечения.
Определяем максимальный прогиб балки:
fmax = L·1/250 = 500/250 = 2,0 см.
Предельный прогиб определяется по таблице 9 [2], как для междуэтажных перекрытий.
Классические ошибки
Инженеры, не имеющие должного опыта, часто допускают некоторые ошибки при расчёте балок, а именно:
Слишком малое сечение, даже если оно и проходит по условиям прочности, может прогнуться больше нормативных значений, из-за чего перекрытие перестанет удовлетворять эксплуатационным требованиям.
- Наоборот, слишком большое сечение приведёт к перерасходу материалов и повышенным затратам при строительстве.
- Неверно выбранное защемление балки повлияет на результат расчёта.
- При расчёте необходимо приводить все единицы к единому модулю, а, в противном случае, результат окажется далёким от истины.
Чтобы не совершать типичные ошибки, следует выполнять расчёт в соответствии с алгоритмом и фиксировать все промежуточные результаты. После выполнения расчёта следует несколько раз проверить результат. Если возникают сомнения, лучше сравнить подобранное сечение балки с аналогичными примерами.
Деревянные балки
Сегодняшнее индивидуальное строительство подразумевает под собой широкое применение балок, изготовленных из дерева. Практически каждое строение содержит в себе деревянные перекрытия. Балки из дерева могут использоваться как несущие элементы, их применяют при изготовлении полов, а также в качестве опор для перекрытий между этажами.
Ни для кого не секрет, что деревянная, так же как и стальная балка, имеет свойство прогибаться под воздействием нагрузочных сил. Стрелка прогиба зависит от того, какой материал используется, геометрических характеристик конструкции, в которой используется балка, и характера нагрузок.
Допустимый прогиб балки формируется из двух факторов:
- Соответствие прогиба и допустимых значений.
- Возможность эксплуатации здания с учетом прогиба.
Проводимые при строительстве расчеты на прочность и жесткость позволяют максимально эффективно оценить то, какие нагрузки сможет выдерживать здание в ходе эксплуатации. Также эти расчеты позволяют узнать, какой именно будет деформация элементов конструкции в каждом конкретном случае. Пожалуй, никто не будет спорить с тем, что подробные и максимально точные расчеты – это часть обязанностей инженеров-строителей, однако с использованием нескольких формул и навыка математических вычислений можно рассчитать все необходимые величины самостоятельно.
Способы выполнить расчет и проверку на прогиб
Причина, по которой СНиПы устанавливают столь драконовские ограничения, проста и очевидна. Чем меньше деформация, тем больше запас прочности и гибкости конструкции. Для прогиба менее 0,5% несущий элемент, балка или плита все еще сохраняет упругие свойства, что гарантирует нормальное перераспределение усилий и сохранение целостности всей конструкции. С увеличением прогиба каркас здания прогибается, сопротивляется, но стоит, с выходом за пределы допустимой величины происходит разрыв связей, и конструкция лавинообразно теряет жесткость и несущую способность.
Просчитать прогиб конструкции можно несколькими способами:
- Воспользоваться программным онлайн-калькулятором, в котором «зашиты» стандартные условия, и не более того;
- Использовать готовые справочные данные для различных типов и видов балок, для различных опор схем нагрузок. Нужно только правильно идентифицировать тип и размер балки и определить искомый прогиб;
- Посчитать допустимый прогиб руками и своей головой, большинство проектировщиков так и делают, в то время как контролирующие архитектурные и строительные инспекции предпочитают второй способ расчета.
Измерив, насколько просела балка потолочного перекрытия, можно с 99% уверенностью определить, находится ли конструкция в аварийном состоянии или нет.
Предназначение калькулятора для определения изгиба
Для создания каркасов различных строений самое большое распространение получила древесина. Из нее, как из пластилина, можно сотворить конструкцию любой сложности. Однако далеко не последнее место занимает и такой конструкционный материал как различные металлические профили.
Их выгодно отличает такое свойство как пластичность, долговечность и прочность. Не последнее место среди таких материалов занимают профильные и круглые трубы. Попытайтесь представить себе навес для автомобиля из профильной трубы с покрытием из поликарбоната и такое же строение из уголка.
Похоже, двух мнений быть не может. А любая балка из трубы в конструкции должна быть просчитана. Это необходимо по двум причинам:
- Получить объект с достаточным запасом прочности под воздействием собственного веса, а также ветровых и снеговых нагрузок.
- Подобрать минимально допустимый для строения профиль с целью минимизировать расходы на материалы.
Для достижения этой цели необходимо воспользоваться нашим онлайн калькулятором и рассчитать балку из трубы на изгиб. Это в случае, если деталь закреплена с одной стороны (консольная). Если же закреплены оба конца, понадобится рассчитать трубу на прогиб.
При этом необходимо учитывать следующие обстоятельства:
- Размеры и сечение: (профильная или круглая). Для профильной прямоугольной трубы расчет производится с учетом направления воздействия. При расчете балок из квадратной трубы этот фактор одинаков для любого направления воздействия.
- Прочностные характеристики материала с учетом толщины стенок и марки материала. Это особенно актуально при использовании балок из круглой трубы, расчет которой в значительной степени зависит от указанных характеристик ввиду многообразия применяемых материалов.
В качестве примера рассмотрим схему, в которой балка находится на двух опорах, а к ней прикладывается сосредоточенная сила в произвольной точке. До момента прикладывания силы балка представляла собой прямую линию, однако под воздействием силы изменила свой вид и вследствие деформации стала кривой.
Предположим, что плоскость ХУ является плоскостью симметрии балки на двух опорах. Все нагрузки действуют на балку в этой плоскости. В этом случае фактом будет то, что кривая, полученная в результате действия силы, также будет находиться в этой плоскости. Данная кривая получила название упругой линии балки или же линии прогибов балки. Алгебраически решить упругую линию балки и рассчитать прогиб балки, формула которого будет постоянной для балок с двумя опорами, можно следующим образом.
Расчет нагрузки
Перед началом расчета производят сбор сил, действующих на двутавровую балку. В зависимости от продолжительности воздействия, их разделяют на временные и постоянные. Расчет нагрузки на двутавровые балки представлен в таблице:
Собственная масса балки и перекрытия. В упрощенном варианте вес межэтажного перекрытия без цементной стяжки с учетом массы балки принимают равным 350 кг/м 2 , с цементной стяжкой – 500 кг/м 2
Зависят от назначения здания
Снеговые, зависят от климатических условий региона
Взрывные, сейсмические. Для балок, работающих в стандартных эксплуатационных условиях, не учитываются. В онлайн-калькуляторах обычно не учитываются
Выделяют два типа нагрузки:
- Нормативные устанавливаются строительными нормами и правилами и расчетные;
- Расчетные равны нормативной величине, умноженной на коэффициент надежности.
При усилии менее 200 кг/м2 коэффициент обычно принимают равным 1,3, при более 200 кг/м2 – 1,2.
Шаг между балками принимают равным 1 м. В некоторых случаях, если это допустимо в конкретных эксплуатационных условиях, в целях экономии материалов его принимают равным 1,1 или 1,2 м.
При расчетах принимают во внимание марку стали. Для использования в условиях высоких нагрузок и при минусовых температурах востребованы двутавровые балки, изготовленные из низколегированных сталей.
Усиление ↑
Если несущая способность двутавра оказывается недостаточной, то возникает необходимость ее усиления. Для различных элементов сварной конструкции этот вопрос решается по-разному.
К примеру, для элементов, воспринимающих нагрузки типа растяжения, сжатия или изгиба, используют такой вариант усиления: увеличивают сечение, иначе говоря, повышают жесткость, скажем, приварив дополнительные детали.
Теоретически – это один из лучших вариантов усиления, однако, при его реализации не всегда удается получить требуемый результат. Дело в том, что элементы в процессе сварочных работ нагреваются, а это несет за собой уменьшение несущей способности.
В какой степени можно ожидать такого понижения зависит от размеров двутавра и режима и направления сварочных работ. Если для продольных швов максимальное понижение оказывается в пределах 15%, то для швов в поперечном направлении оно может достичь и 40%.
Расчетно и экспериментально было доказано, что оптимального результата усиления под нагрузкой можно получить при максимальном напряжении в 0,8 Ry, то есть 80% расчетного сопротивления стали, которая была использована для изготовления двутавра.