Assma.ru

Ремонт и стройка
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электроискровое легирование металлических поверхностей

Металлообработка электроискровым легированием

Локальный метод, позволяющий точечно изменять поверхностные свойства материала, — электроискровое легирование. Эту технологию мы рассмотрим подробно.

Легирование металла — процесс насыщения добавками, улучшающими физико-технические свойства материала. Процесс осуществляется непосредственно при производстве сплавов. То есть, улучшаются характеристики всей массы металла. Это не всегда оправдано, в силу повышения цены.

Локальный метод, позволяющий точечно изменять поверхностные свойства материала, — электроискровое легирование (ЭИ).

Alternative content

В данной статье рассмотрено использование электроискрового метода обработки для нанесения покрытий, этот метод принято называть электроискровым легированием (ЭИЛ).

При ЭИЛ осуществляется воздействие на металлические поверхности в газовой среде короткими (до 1000 мкс) электрическими разрядами энергией от сотых долей до десятка и более джоулей и частотой обычно не более 1000 Гц. При периодическом контакте электрода А (анода) – см. рис. 1

, вибрирующего в межэлектродном промежутке МЭП с частотой fa,c обрабатываемым изделием К (катодом) и его разрыве возникают электрические разряды, создаваемые генератором импульсов ГИ.

В результате происходит следующее: идут процессы преимущественного разрушения материала электрода (анода) и образования вторичных структур в рабочей его части; осуществляется перенос продуктов эрозии электрода на деталь (катод); на поверхности обрабатываемого изделия протекают микрометаллургические процессы; элементы материала электрода диффундируют в поверхностный слой изделия; поверхность изделия приобретает новый специфичный рельеф (рис. 2 а

); образуется на поверхности изделия измененный слой (
рис. 1, 2 б
), включающий белый слой, диффузионную зону и зону термического влияния, при этом изменяются свойства поверхностного слоя; формируется поверхностный слой мелкодисперсного состава, вплоть до наноуровня (
рис. 2 в
); происходит изменение размера изделия.

Таким образом на поверхности детали образуется новый слой, которому придаются отличные от исходного состояния свойства в зависимости от параметров искрового разряда, состава электродного материала, материала обрабатываемой детали и других факторов. Эти свойства управляются в широких пределах (табл. 1

) и обеспечивают требуемые качества: повышенные микротвердость, износостойкость, жаростойкость и другие.

Наряду с возможностью формирования покрытий с характеристиками широкого диапазона значений, метод ЭИЛ обладает рядом достоинств, определяющих его успешное использование для решения производственных проблем:

  • возможность локального формирования покрытий в строго указанных местах радиусом от долей миллиметра и более, не защищая при этом остальную поверхность;
  • высокая адгезия электроискрового покрытия с основным материалом;
  • отсутствие нагрева и деформаций изделия в процессе обработки;
  • возможность использования в качестве электродов большинства токопроводящих материалов как из чистых металлов, так и их сплавов, композиций;
  • сравнительная простота технологии, не требуется специальной предварительной обработки поверхности;
  • высокая надежность оборудования и простота его обслуживания, оно малогабаритное и ремонтопригодное;
  • низкая энергоемкость ручных и механизированных процессов ЭИЛ (0,3 2,0 кВт);
  • высокий коэффициент переноса электродного материала (6080%).

Широкие технологические возможности и достоинства ЭИЛ являются основой его эффективного успешного применения в различных отраслях при упрочнении объектов из металлических материалов или восстановлении размеров, утраченных в процессе эксплуатации [26 и др.]. Это в полной мере относится к машиностроительным предприятиям. Здесь электроискровые технологии применяются для увеличения износостойкости режущих инструментов заготовительного и основного производства, различной технологической оснастки, включая штампы для холодной и горячей обработки металлов и неметаллических материалов, деталей машин (рис. 3

При назначении технологии нанесения упрочняющих электроискровых покрытий и последующей обработки необходимо учитывать условия работы объектов упрочнения (инструментов, деталей), т.е. факторы, инициирующие изнашивание их рабочих поверхностей. На примере инструментов для механической обработки металлов (резанием или давлением) ниже приведены данные об основных факторах износа и принципы увеличения износостойкости их (табл. 2

), а также технологические особенности упрочняющей технологии этих объектов (
табл. 3
). Реализация такого подхода позволяет на практике увеличить срок службы инструментов и деталей в 26 раз и более. При этом применительно к резанию металлов эффективность упрочнения режущих инструментов значительно повышается с ужесточением режимов резания.

Нанесение электроискровых покрытий осуществляется в ручном или механизированном режимах на установках ЭИЛ. На рис. 4

и в
табл. 4
выборочно приведены фотографии и технические характеристики ряда известных установок ЭИЛ отечественного и зарубежного производства, применяемые на производстве при решении широкого круга задач, в т.ч. на предприятиях машиностроения.

– восстановление и упрочнение деталей машин;
РИ
– упрочнение режущих инструментов;
ШЛО
– упрочнение штампов листовой штамповки;
ИГД
– упрочнение инструментов горячего деформирования металлов и неметаллов;
ЭК
– снижение переходного сопротивления электрических контактов;
ЭЭО
– электроэрозионная обработка деталей (прошивка пазов, отверстий и т.п.)

В настоящее время ГОСНИТИ Россельхозакадемии и другие разработчики в России и за рубежом ведут работы по созданию новых технологий, в т.ч. комбинированных, нового промышленного оборудования для ЭИЛ, новых электродных материалов.

Широкое и эффективное использование в России и за рубежом электроискрового метода обработки металлических материалов подтверждает слова Бориса Романовича Лазаренко, сказанные им еще в 1947 году: «Многовековое царствование механического способа обработки металлов, перевернувшего мир в прошлых столетиях, – кончается. Его место занимает, несомненно, более высокоорганизованный процесс, когда обработка металла производится электрическими силами… Ему будет принадлежать будущее, и притом – ближайшее будущее».

к. т. н. В.И. Иванов д.т.н. Ф.Х. Бурумкулов ГОСНИТИ Москва

1. Авторское свидетельство № 70010 от 03.04.1943.

2. Лазаренко Н. И. Электроискровое легирование металлических поверхностей. М.: Машиностроение, 1976 г. – 44 с.

3. Иванов Г.П. Технология электроискрового упрочнения инструментов и деталей машин. М.: Машгиз, 1961. – 303 с.

4. Самсонов Г.В., Верхотуров А.Д., Бовкун Г.А., Сычев В.С. Электроискровое легирование металлических поверхностей. Киев, Наукова думка, 1976. – 220 с.

5. Гитлевич А.Е и др. Электроискровое легирование металлических поверхностей Кишинев: «Штиинца», 1985 г.

6. Бурумкулов Ф.Х., Сенин П.В., Лезин П.П., Иванов В.И., Величко С.А., Ионов П.А. Электроискровое легирование металлических поверхностей – Саранск, ИМЭ МГУ, 2004.

Читать еще:  Порядок крепления кабель-канала к стене

4. Установки для электроискрового наращивания и легирования

Универсальная механизированная высокочастотная установка ИМ-101 (рис. 2) предназначена для электроискрового упрочнения рабочих поверхностей всех видов режущего инструмента, штампового кузнечно-прессового, заготовительного и литейного производств, для восстановления изношенных поверхностей деталей в ремонтном производстве при работе в ручном и механизированном режимах при оснащении одноэлектродными и многоэлектродными головками.

Рис. 2. Универсальная механизированная высокочастотная установка для электроискрового легирования ИМ-101

Особенности: установка оснащена двумя генераторами электроискровых разрядов и позволяет использовать параллельно две одноэлектродные головки для повышения производительности механизированного ЭИЛ.

Технические характеристики установки:

  • напряжение питающей сети, В (50 Гц) – 220±22;
  • потребляемая мощность, кВА – 1,5;
  • суммарная емкость разрядных конденсаторов, мкф – 340;
  • производительность, см2/мин – до12,0;
  • частота следования импульсов, Гц – 100…1200;
  • толщина слоя покрытия, мм – до1,2;
  • шероховатость покрытия, Rа мкм – 1,5;
  • масса генератора, кг – 42;
  • габаритные размеры, мм – 480x210x480;
  • повышенная мощность;
  • позволяет создавать покрытия толщиной до 0,1 мм за один проход.

Малогабаритная установка для ручного ЭИЛ типа ИМ-05 (рис. 3) предназначена для электроискрового упрочнения рабочих поверхностей всех видов режущего инструмента, штампового оснащения кузнечно-заготовительного и литейного производств.

Рис. 3. Малогабаритная установка для ручного ЭИЛ типа ИМ-05

Особенности: оригинальная схема генератора электроискровых разрядов, установка имеет 3 режима работы, максимальная емкость разрядных конденсаторов – 60 мкф.

Технические характеристики установки:

  • напряжение питающей сети, В (50 Гц) – 220±22;
  • потребляемая мощность, кВА – 0,3;
  • производительность, см2/мин – 3,0;
  • частота следования импульсов, Гц – 100;
  • толщина слоя покрытия, мм – до 0,1;
  • шероховатость покрытия, Rа мкм – 3,0;
  • масса, кг – 6,4;
  • габаритные размеры, мм – 245x110x220.

Общая схема процесса электроискрового легирования

На рис. 1 приведена общая схема процесса ЭИЛ с вибрирующим анодом в виде компактного электрода и изображение образующегося верхнего слоя.

Рис. 1. Схема электроискрового легирования (ЭИЛ): Г.И. – генератор импульсного тока; МЭП – межэлектродный промежуток; ИР – искровой разряд; А – анод; К – катод

Процесс ЭИЛ начинается со сближения анода (электрода) с катодом (деталью). При расстоянии между ними, равном пробивному, начинается развитие искрового разряда длительностью 10–6…10–3с, который во многих случаях завершается при контакте электродов.

При небольших напряжениях между электродами (U

Рис. 2. Универсальная механизированная высокочастотная установка для электроискрового легирования ИМ-101

Особенности: установка оснащена двумя генераторами электроискровых разрядов и позволяет использовать параллельно две одноэлектродные головки для повышения производительности механизированного ЭИЛ.

Технические характеристики установки:

  • напряжение питающей сети, В (50 Гц) – 220±22;
  • потребляемая мощность, кВА – 1,5;
  • суммарная емкость разрядных конденсаторов, мкф – 340;
  • производительность, см2/мин – до12,0;
  • частота следования импульсов, Гц – 100…1200;
  • толщина слоя покрытия, мм – до1,2;
  • шероховатость покрытия, Rа мкм – 1,5;
  • масса генератора, кг – 42;
  • габаритные размеры, мм – 480x210x480;
  • повышенная мощность;
  • позволяет создавать покрытия толщиной до 0,1 мм за один проход.

Малогабаритная установка для ручного ЭИЛ типа ИМ-05 (рис. 3) предназначена для электроискрового упрочнения рабочих поверхностей всех видов режущего инструмента, штампового оснащения кузнечно-заготовительного и литейного производств.

Рис. 3. Малогабаритная установка для ручного ЭИЛ типа ИМ-05

Особенности: оригинальная схема генератора электроискровых разрядов, установка имеет 3 режима работы, максимальная емкость разрядных конденсаторов – 60 мкф.

Технические характеристики установки:

  • напряжение питающей сети, В (50 Гц) – 220±22;
  • потребляемая мощность, кВА – 0,3;
  • производительность, см2/мин – 3,0;
  • частота следования импульсов, Гц – 100;
  • толщина слоя покрытия, мм – до 0,1;
  • шероховатость покрытия, Rа мкм – 3,0;
  • масса, кг – 6,4;
  • габаритные размеры, мм – 245x110x220.

Примеры работ

Свяжитесь с нами по телефонам: +7 (812) 679-46-74, +7 (921) 973-46-74, или напишите нам на почту: office@plasmacentre.ru

Наши менеджеры подробно расскажут об имеющихся у нас технологиях нанесения покрытий, упрочнения, восстановления, придания свойств поверхности, а также о стоимости услуг компании.

Применение

Электроискровое легирование нашло применение в областях машиностроения и металлообработки:

  • автомобильное производство;
  • общее машиностроение;
  • производство технологической оснастки;
  • обработка штампов для термической обработки металлов;
  • повышение режущих свойств обрабатывающего инструмента;
  • упрочнение зубьев шестерён;
  • повышение износостойкости шеек коленчатых валов и другие области применения;
  • ремонтные операции при восстановлении работоспособности повреждённых деталей.

Благодаря локализации площади обработки, способ электроискрового упрочнения применяют часовых дел мастера, ювелиры. Прижился метод у любителей создавать действующие металлические копии автомобилей, кораблей, самолётов. Метод позволил наносить покрытие на стекло и керамику.

Упрочнение и восстановление штампов электроискровым методом

Описан один из перспективных способов восстановления и упрочнения штампов для горячей штамповки, основанный на явлении электрической эрозии металлов при прохождении между ними электрических разрядов.

Ключевые слова:
штамповая оснастка, восстановление штампов, упрочнение штампов.
Одним из перспективных способов восстановления и упрочнения штампов для горячей штамповки могут явиться способы, основанные на явлении электрической эрозии металлов при прохождении между ними электрических разрядов. Во время электроискрового разряда через электроды проходит мощный импульс электрического тока. Поток электронов, движущийся с высокой скоростью, приводит к разогреву анода и межэлектродного зазора до 12000 оС. Материал анода на торце плавится и переходит в газообразное состояние, что вызывает локальные взрывы жидкого материала анода.

Оторвавшиеся от торца анода расплавленные частицы материала оседают на катоде или рассеиваются в зависимости от межэлектродной среды — жидкой или газовой. Это свойство электроискрового разряда можно использовать на практике при восстановлении изношенных рабочих поверхностей штампов. В этом случае штамп подключают к катоду, а анодом является материал, которым восстанавливают поверхность штампа.

Наиболее простым, перспективным и доступным способом восстановления и упрочнения штампов может явиться электроискровое наращивание и упрочнение легированием их рабочих поверхностей [1]. При электроискровом способе восстановления и упрочнения штампов используется явление электрической эрозии и переноса материала электрода (анода) на поверхность штампа (катода) при прохождении электрического разряда между ними в разовой среде.

Читать еще:  Как сделать промывку системы отопления частного дома

Принципиальная схема процесса электроискрового восстановления и упрочнения штампов показана на рисунке 1.

Рис. 1. Принципиальная схема восстановления и упрочнения штампов электроискровым методом: Г — генератор; С — конденсаторы; А — амперметр; V — вольтметр; 1 — штамп (катод); 2 — электрод (анод)

При наличии зазора между электродом и поверхностью штампа конденсаторы заряжаются от генератора. Величина зарядного тока регулируется резистором R. При замыкании электрода (анода) на поверхность штампа (катод) возникает искровой разряд за счет мгновенного разряда конденсаторов. В результате возникает импульсный ток большой плотности при высокой концентрации теплоты. Это приводит к мгновенному разогреву и плавлению торца электрода (анода) и переносу его материала и оплавлению его на поверхности штампа (катода). Поверхностный слой на штампе образуется в результате многократного воздействия на него электрических импульсов.

Интенсивность формирования поверхностного слоя зависит от величины энергии разряда (накопительной емкости конденсаторов) и среднего тока источника импульсов. Изменение этих параметров непосредственно влияет на толщину слоя, его твердость, пористость, сплошность и шероховатость.

В результате высоких температур в зоне контакта электрод — поверхность штампа и химических реакций между углеродом штампа и азотом воздуха в нарощенном слое образуются высокодисперсные карбиды, нитриды и карбонитриды. Твердость слоя, измеренная методом Виккерса на приборе ПМТ — З, составляет 1000…1400 HV и зависит от материала электрода (анода). Общий нарощенный слой на поверхности штампа слой состоит из верхнего белого слоя и нижнего диффузионного слоя с переходной концентрацией карбидов и нитридов. Такая структура нарощенного слоя постепенно переходит в структуру основного металла штампа. Наличие диффузионного слоя в структуре нарощенного слоя возможно получение разнолегированных слоёв.

Важное достоинство электроискрового метода заключается в возможности переноса на поверхность штампа любых токопроводящих материалов, например, тугоплавких и высокопрочных металлов и их соединений и мягких металлов. При этом обеспечивается высокая прочность сцепления нарощенного слоя с поверхностью штампа.

Использование данного метода позволяет наносить восстанавливающие и упрочняющие слои на любые рабочие поверхности штампов любой конфигурации и размеров. Кроме этого, возможно нанесение локальных покрытий на места износа рабочих поверхностей штампов.

Основными недостатками электроискрового метода являются низкая производительность (до 4 см2 в минуту) и малая толщина нарощенного слоя (до 0,3 мм).

В данной работе исследована возможность увеличения толщины слоя и повышения производительности процесса путем вращения электрода (анода), изготовленного из стали 5ХНМ. Слои наносили на поверхность образцов с размерами 20×40×40 мм.

После нанесения слоя на поверхность образца его шлифовали на горизонтально-шлифовальном станке до получения гладкой поверхности без выступов, впадин и раковин. Шероховатость поверхности Ra 45. Толщину слоя измеряли микрометром четыре раза в трех местах образца по длине — в середине и по краям.

Обработку результатов измерений проводили методом математической статистики в следующей последовательности:

— рассчитывали среднее арифметическое;

— рассчитывали среднее квадратичное отклонение;

— определяли доверительный интервал.

При расчетах считали, что систематическая составляющая погрешности отсутствует. Зависимость толщины слоя от частоты вращения электрода (анода) представлена на рисунке 2.

Рис. 2. Зависимость толщины нарощенного слоя от частоты вращения электрода (анода)

Наибольшая толщина слоя получена при частоте вращения электрода (анода) 36÷45 об/мин — 1,2 ± 0,1 мм. При частотах вращения более 45 об/мин толщина слоя быстро уменьшалась, что связано, по-видимому, с интенсивным разбрызгиванием расплавленного материала с торца электрода (анода).

Кроме этого, в данной работе разработан состав электрода (анода), позволяющий получать на рабочей поверхности штампов слои с высокой твердостью, износостойкостью и стойкостью к образованию тепловых трещин. Электроды прессовали в пресс-формах под давлением 0,5 т/см2 в виде прутков диаметром 5 мм длинной 80 мм из порошков карбидов бора, титана и ванадия, нитрида титана с добавлением 3 % по массе кобальта. В качестве связующего материала использовали парафин. Порошки перед прессованием перемешивали в шаровой мельнице в течение 30 минут для получения однородной смеси. После прессования прутки сушили в вакууме при температуре 200оС в течении двух часов. После сушки прутки спекали в вакууме при температуре 1450оС в течении четырех часов.

Полученными электродами электроискровым методом наносили слои толщиной около одного миллиметра на образцы из закаленной стали марки 5ХНМ. После шлифования поверхности слоя исследовали его механические свойства. Твердость нанесенного слоя составили HRA 69…71. Износостойкость под нагрузкой 0,5 т/см2 оказалось сопоставимой с износостойкостью твердого сплава марки Т15К6. Число теплосмен до появления в слое микротрещин при охлаждении с 800оС до 200оС со скоростью 40…50оС/мин и с последующим нагревом с 200оС до 800оС со скоростью 30…40оС/мин составила 800…830 теплосмен.

Таким образом, применение электроискрового метода с вращающимся электродом (анодом), изготовленным из разработанного материала, может оказаться перспективным при восстановлении и упрочнении изношенных поверхностей штампов для холодной и горячей штамповки.

1. Ольховацкий, А. К. Электрофизические и электрохимические методы размерной обработки при восстановлении деталей машин/ А. К. Ольховацкий. — Челябинск: ВНИИТУВИД-ЧГАУ, 1996. — 40 с.

Выводы

  1. Разработаны инверторные переносные установки ИНТАЛ-1500 и ИНТАЛ-3000 для ЭИЛ с энергией разряда 10 и 20 Дж соответственно.
  2. Предложен новый принцип ЭИЛ без вибрации электрода-анода.
  3. Установлено, что с увеличением энергии единичного импульса с 10 до 20 Дж эрозия анода возрастает в 2,82 раза, а привес катода в 2,26 раза.
  4. Установлено, что микротвёрдость нанесенной быстрорежущей стали в поперечном сечении на глубине 50 мкм изменяется в пределах от 16000 до 19500 МПа.
  5. Глубина упрочнённого слоя с увеличением тока от 10 до 25 А возрастает от 200 до 450 мкм.
Читать еще:  Как установить сэндвич-панели для окон – секреты теплых и красивых откосов

МПК / Метки

Прибор для определения толщины слоя, наносимого на металлическое изделие

Номер патента: 39399

. колебаниями, завиНа чертеже фиг. 1 изображает предлагаемый прибор, а фиг, 2 дает кривуюс результатами испытаний прибора.Прибор состоит из неравноплечегокоромысла 1, свободно качающегося напризме 2, поддерживаемой подставкой 3.Винты 4 подставки не позволяют коромыслу производить слишком большие,ненужнье колебания. На коромыслепри помощи призмы 5 и крючка б укреплен магнит 7, нижний конец 1 О которогопомещен в гнезде, лишающем его возможности совершать колебания в горизонтальной плоскости, В состоянии покоя вес магнита уравновешивается длинным плечом коромысла 1 и грузомв виде ролика 8, когда этот последнийкасается плеча в точке 9,Когда же к концу 10 магнита 7 подводится и прижимается стальная илижелезная деталь, равновесие.

Прибор для определения толщины слоя, наносимого на металлическое изделие

Номер патента: 56055

. (например, образец погружен в жидкость). Между тем для измерения, например, глубины цементации детали необходимо поддерживать температуру детали в момент измерения не ниже 210, так как выше этой температуры цементит становится немагнитным, в силу чего толщина цементированного слоя резко сказывается на величине отрывной силы магнита.Предлагаемая форма выполнения прибора, в отличие от существующих вышеуказанных лабораторных приборов, автоматически фиксирует величину отрывной силы, являясь в то же время прибором переносного (карманного) типа,На чертеже изображен схематический вид прибора для определения толщины слоя, наносимого на металлическое изделие,К раме 1 прибора перпендикулярно к ней укреплена ось 2, на которой монтирована.

Способ определения толщины упрочненного слоя на нетравленом металлическом образце

Номер патента: 196421

. трудоемкости и повышения точности процесса определения глубины упрочнецного слоя, плоскость среза образца полируют в фиксированном направлении, исследуют рельеф поверхности полученного шлифа, например с помощью интерферецционного микроскопа, и измеряют расстояние от края упрочцецного слоя до места изменения рельефа поверхности шлифа.Иа чертеже показан образец, закрепленный в оправке, для осуществления предлагаемого способа.Образец 1, имевши Р пендикулярной или наклонной к упрочненному слою 2, закрепляют в оправке 3 путем заливки, например, легкоплавким сплавом или пластмассой 4. Затем производят полировку плоскости среза в направлении А от сердцевины к краю упрочненцого слоя и исследуют рельеф поверхности полученного шлифа с.

Устройство для многократного волочения металлических изделий с применением радиальных ультразвуковых колебаний

Номер патента: 735355

. оси волок каждой пары выполненыпазы 7 для смазочной жидкости. Устройство снабжено направляюшими роликами 8для передачи проволоки с одной оси волочениа на другую, а также корытом 9,расположенным под диском, для сбора смазочной жидкости,Предлагаемое устройство работает следующим образом.г735355 4 чистоты, повышает стойкость волок в 1,5-2 раза. 3Проволоку 10 заправляют в волоки 3 и 4, пропускают по направляющим роликам и заправляют в волоки 5 и 6, Затем. пазы 7 заполняют смазочной жидкостью. Включают преобразователь 1 продольных колебаний и приводной механизм тянущего барабана (на чертеже не показан). Под действием радиальных колебаний, которые распространяются вдоль стенок пазов, смазочная жидкость перемещается к оч 10 верстию в волоках.

Устройство для ультразвукового контроля качества материалов с шероховатой поверхностью

Номер патента: 1185107

. колебаний в контролируемом материале между точечными преобразователями 6,7 больше, чем время распространения колебаний между плоскими преобразователями 8,9, т.е. размах шероховатости изделия не превышает максимально допустимой величины и контроль прочности из-, делия в этой точке может производиться плоскими преобразователями 8,9 с необходимой точностью.В этом случае блок 21 сравнения срабатывает таким образом, что реле блока 22 останавливает вибратор 16 в таком положении, что к измерительному прибору подключается пара плоских преобразователей 8 и 9. Кроме того, реле блока 22 включает индикаторную лампочку 10 зеленого цвета. Загора- ние зеленой индикаторной лампочки явдат ляется сигналом для производящего контроль оператора, что.

Похожие патенты RU2355521C2

Изобретение относится к области обработки металла воздействием электрического тока, в частности к электроискровому легированию. Электрод состоит из по меньшей мере двух скрепленных между собой торцами, отдельных электродов одинакового поперечного сечения, каждый из которых выполнен из легирующего материала другого состава по сравнению с составом материала контактирующих с ним электродов. Способ изготовления электрода включает горячее прессование порошкового материала в пресс-форме, состоящей из матрицы и пуансона, при этом в пресс-форму с противоположной стороны матрицы вводят второй пуансон, а в качестве пуансонов используют готовые отдельные электроды, которые составляют изготавливаемый электрод. Изобретение позволяет упростить технологию электроискрового легирования и сократить время технологического процесса при нанесении комбинированного (износостойкого и антифрикционного) легирующего покрытия. 2 н. и 3 з.п. ф-лы, 3 ил.

Заключение

Технология позволяет резать металлы любой прочности. Обработка выполняется за счет создания ионизированного потока частиц, которые прожигают металл. Разогретые ионы создаются с помощью электрической дуги, которая возникает между проводящим электродом и металлической поверхностью обрабатываемой детали при прохождении между ними электрического тока. Чтобы не повредить деталь и не испарить электрод, используется защитная жидкость-диэлектрик, а электрический ток подается небольшими порциями-импульсами (частота — 0,001 с).

ЭЭО-станки выполняют все основные операции — создание отверстий, резка, нанесение маркировки. Электроэрозионная обработка металла обладает множеством преимуществ — высокая точность, универсальность (для металлов), простота применения станков. Однако есть и недостатки — нельзя резать пластик, бетон или дерево, большое потребление электричества, высокая стоимость станка. Использовать ЭЭО-станки рекомендуется для производства высокоточных деталей. Основные модели станков — AGIE INTEGRAL 2, модель 4531, SODICK AQ535.

Используемая литература и источники:

  • Электрофизические и электрохимические методы обработки / Юдин Д.Л. // Экслибрис — Яя. — М. : Советская энциклопедия, 1978.
  • Немилов Е.Ф. Электроэрозионная обработка материалов. — Л.: Машиностроение, 1983.
  • Ставицкий Б.И. Из истории электроискровой обработки материалов // Оборудование и инструмент для профессионалов. Металлообработка. — 2006.
  • Статья на Википедии
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector