Каким путем получается металлический алюминий?
Как добывается и производится алюминий в промышленных условиях
К числу наиболее распространенных металлов земной коры относится алюминий. Этот металл является наиболее легким, а также обладает хорошей теплопроводностью. Хорошо поддается механической обработке литью, хорошо гнется, вторичный по переработке. Его главные физические свойства:
- Имеет серебристый цвет (с оттенком белого);
- Легкий;
- Плотность составляет около 2713 кг на один квадратный метр;
- Температура кипения от 2518.9 градусов Цельсия;
- Высокая пластичность до 50%.
Месторождения бокситов
Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.
В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин — на Кольском полуострове.
Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.
Производство алюминия технической чистоты
Алюминий технической чистоты (более 99%) промышленно получают в результате двух последовательных процессов. В результате первого получают оксид алюминия (процесс Байера), а на следующем этапе проводят процесс электролитической редукции (электролиз методом Холла-Эру), благодаря которому получают чистый алюминий. Для снижения расходов, связанных с транспортировкой бокситовой руды, большинство перерабатывающих предприятий строят недалеко от шахт.
Процесс Байера
Первый этап после добычи руды заключается в ее мытье с помощью воды. Таким образом удаляют большую часть загрязнений, которые просто растворяются в воде. Затем, в обработанное водой сырье добавляют CaO, т.е. оксид кальция. После этого его измельчают с помощью специальных трубных мельниц до момента получения зерен с очень малым диаметром, т.е. меньше 300 мкм. Соответствующее измельчение сырья чрезвычайно важно, так как оно обеспечивает большую площадь поверхности зерен, что, в свою очередь, влияет на эффективность протекания процесса экстракции.
Следующий этап производства оксида алюминия заключается в растворении зерен при помощи водного раствора каустической соды. В Группе PCC гидроксид натрия производится методом мембранного электролиза. Полученный таким образом продукт характеризуется очень высоким качеством и чистотой, отвечая при этом требованиям последнего издания Европейской фармакопеи. Смесь, содержащая молотые зерна и гидроксид натрия, хранится в течение нескольких часов в специальных реакторах, называемых автоклавами. Во время протекающего процесса осаждения в реакторах поддерживаются высокое давление и повышенная температура. Таким образом, получают алюминат натрия, который затем очищают при помощи разных фильтров.
На следующем этапе очищенный раствор алюмината натрия подвергается разложению. В результате образуется натровый щелок (т.е. водный раствор каустической соды) и кристаллы гидроокиси алюминия высокой степени чистоты. Полученный в результате кристаллизации осадок отфильтровывают и промывают водой. А оставшийся натровый щелок нагревают и возвращают в процесс для повторного использования.
Последним этапом производства чистого оксида алюминия является кальцинация. Она заключается в нагревании гидроксида алюминия при температуре выше 1000 o C, в результате чего происходит его разложение на Al2O3, который получают в виде чистого белого порошка. Так подготовленный оксид алюминия транспортируют в печи для получения металлического алюминия в процессе электролитической редукции.
Электролиз оксида алюминия
Следующим этапом получения чистого алюминия является проведение процесса электролиза методом Холла-Эру. В первую очередь, полученный в процессе Байера Al2O3 расплавляют с криолитом и таким образом приготовленный раствор подвергают процессу электролиза при температуре не выше 900 o C. Полученный таким образом жидкий алюминий отделяют от электролита и удаляют из электролитических ванн с помощью т.н. вакуумных сифонов. Затем сырье попадает в литейное устройство, откуда на дальнейшем этапе его вкладывают в раскаленные печи, в которых происходит процесс переработки. Он заключается в очистке алюминия с целью достижения максимальной чистоты. В промышленных условиях алюминий может быть очищен двумя методами. Первый из них заключается в растопке алюминия и пропускании через него хлора, благодаря чему примеси связываются с хлором, образуя хлориды, которые затем удаляют из процесса. Второй метод заключается в электролитической редукции расплавленного с медью алюминия. Полученный таким образом конечный продукт характеризуется очень высокой чистотой.
Алюминий
Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.
Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.
Основное и возбужденное состояние
При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.
Природные соединения
В природе алюминий встречается в виде минералов:
- Al2O3 — корунд
- 3BeO*Al2O3*6SiO2 — берилл (аквамарин — примесь Fe и изумруд — примесь Cr2O3)
- Al2O3*Cr2O3 — красный рубин
- Al2O3 с примесью Fe +2 /Fe +3 /Ti
- Al2O3*H2O — боксит
Получение
Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3AlF6). Галлий, индий и таллий получают схожим образом — методом электролиза их оксидов и солей.
Химические свойства
- Реакции с неметаллами
При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.
Al + Br2 → AlBr3 (бромид алюминия)
При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.
Al + F2 → (t) AlF3 (фторид алюминия)
Al + S → (t) Al2S3 (сульфид алюминия)
Al + N2 → (t) AlN (нитрид алюминия)
Al + C → (t) Al4C3 (карбид алюминия)
Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι — двойственный), вступает в реакции как с кислотами, так и с основаниями.
Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде — выделяется водород)
При прокаливании комплексные соли не образуются, так вода испаряется — вместо них образуются (в рамках ЕГЭ) средние соли — алюминаты (академически — сложные окиселы):
Реакция с водой
При комнатной температуре не идет из-за образования оксидной пленки — Al2O3 — на воздухе. Если разрушить оксидную пленку нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) — реакция идет.
Алюминотермия (лат. Aluminium + греч. therme — тепло) — способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов алюминием. Температуры при этом процессе могут достигать 2400°C.
С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.
Оксид алюминия
Оксид алюминия получают в ходе взаимодействия с кислородом — на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид алюминия, как нерастворимое основание, легко разлагается на оксид и воду.
Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.
Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)
Гидроксид алюминия
Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия часто выпадает белый осадок — гидроксид алюминия.
Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.
Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание — Li3[Al(OH)6] — гексагидроксоалюминат лития)
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Рекуперация энергии в алюминиевой промышленности
Потенциал рекуперации энергии в энергоемких отраслях промышленности огромен. Особенность производства алюминия в рекуперации, как процесс, позволяющий сохранить часть энергии. В настоящее время высокие затраты на электроэнергию и энергетическая нестабильность привели к сокращению первичного производства этого белого металла в большинстве регионов нашего мира.
Энергетический менеджмент должен изучить способы снижения энергопотребления и общей стоимости, такие как:
- Искать энергетические добавки к поставляемой по сетям электроэнергии, такие как распределенная генерация и возобновляемые источники энергии, в частности гидроэнергия.
- Повышение энергоэффективности и снижение затрат.
- Контроль и управление качеством углерода, кокса, торфяного и древесного дегтя и другого сырья для первичного производства.
- Улучшенные контрольно-измерительные приборы и системы управления для получения оптимальных электромагнитных эффектов и перемешивания металла для требований подачи глинозема.
- В будущем алюминиевая промышленность, возможно, потребует замены процессов Байера.
Технологические отходы, особенно те, которые образуются при первичном производстве, могут помочь производителям алюминия минимизировать отходы, устранить потоки отходов и улучшить утилизацию отработанного тепла, особенно из отходящих газов. Для плавки, затвердевания и рециркуляции, а также для рекуперации энергии альтернативные чистые источники энергии могут помочь промышленности удовлетворить свои энергетические потребности при дальнейшем минимизации ее воздействия на окружающую среду, возможно, используя следующие технологии:
- Комбинированная теплоэнергетика
- Распределенная генерация
- Использование водородного топлива и топливных элементов
- Индукционная плавка с использованием возобновляемых источников электроэнергии.
Области применения
Технические характеристики и возможность подвергать алюминий различным обработкам обусловили его широкое распространение. В частности металл активно используется в следующих областях:
- Авиастроение;
- Автомобилестроение;
- Ракетостроение;
- Производство посуды;
- Пищевая промышленность;
- Судостроение;
- Микроэлектроника;
- Энергетика и многое другое.
Нередко в процессе использования алюминия применяют в симбиозе с другими металлами, например, железом, титаном, никелем, бронзой, медью и т.п. Особенности алюминия, его технические характеристики и широкое распространение сделали этот металл крайне востребованным. Ни она современная область промышленности не обходится без его применения.
Как паять алюминий без специального флюса, поведает этот видеосюжет:
Рекуперация энергии в алюминиевой промышленности
Потенциал рекуперации энергии в энергоемких отраслях промышленности огромен. Особенность производства алюминия в рекуперации, как процесс, позволяющий сохранить часть энергии. В настоящее время высокие затраты на электроэнергию и энергетическая нестабильность привели к сокращению первичного производства этого белого металла в большинстве регионов нашего мира.
Энергетический менеджмент должен изучить способы снижения энергопотребления и общей стоимости, такие как:
- Искать энергетические добавки к поставляемой по сетям электроэнергии, такие как распределенная генерация и возобновляемые источники энергии, в частности гидроэнергия.
- Повышение энергоэффективности и снижение затрат.
- Контроль и управление качеством углерода, кокса, торфяного и древесного дегтя и другого сырья для первичного производства.
- Улучшенные контрольно-измерительные приборы и системы управления для получения оптимальных электромагнитных эффектов и перемешивания металла для требований подачи глинозема.
- В будущем алюминиевая промышленность, возможно, потребует замены процессов Байера.
Технологические отходы, особенно те, которые образуются при первичном производстве, могут помочь производителям алюминия минимизировать отходы, устранить потоки отходов и улучшить утилизацию отработанного тепла, особенно из отходящих газов. Для плавки, затвердевания и рециркуляции, а также для рекуперации энергии альтернативные чистые источники энергии могут помочь промышленности удовлетворить свои энергетические потребности при дальнейшем минимизации ее воздействия на окружающую среду, возможно, используя следующие технологии:
Соединения алюминия
Al2O3 (глинозем)
Оксид алюминия Al2O3 является белым, очень тугоплавким и твердым веществом (в природе тверже только алмаз, карборунд и боразон).
Свойства глинозема:
- не растворяется в воде и вступает с ней в реакцию;
- является амфотерным веществом, реагируя с кислотами и щелочами:
Al2O3 + 6HCl = 2AlCl3 + 3H2O;
Al2O3 + 6NaOH + 3H2O = 2Na3[Al(OH)6]; - как амфотерный оксид реагирует при сплавлении с оксидами металлов и солями, образуя алюминаты:
Al2O3 + K2O = 2KAlO2.
В промышленности глинозем получают из бокситов. В лабораторных условиях глинозем можно получить сжигая алюминий в кислороде:
4Al + 3O2 = 2Al2O3.
Применение глинозема:
- для получения алюминия и электротехнической керамики;
- в качестве абразивного и огнеупорного материала;
- в качестве катализатора в реакциях органического синтеза.
Al(OH)3
Гидроксид алюминия Al(OH)3 является белым твердым кристаллическим веществом, которое получается в результате обменной реакции из раствора гидроксида алюминия — выпадает в виде белого студенистого осадка, кристаллизующегося со временем. Это амфотерное соединение почти не растворимое в воде:
Al(OH)3 + 3NaOH = Na3[Al(OH)6];
Al(OH)3 + 3HCl = AlCl3 + 3H2O.
- взаимодействие Al(OH)3 с кислотами:
Al(OH)3+3H + Cl = Al 3+ Cl3+3H2O - взаимодействие Al(OH)3 со щелочами:
Al(OH)3+NaOH — = NaAlO2 — +2H2O
Гидроксид алюминия получают путем действия щелочей на растворы солей алюминия:
AlCl3 + 3NaOH = Al(OH)3 + 3NaCl.
Как производят крылатый металл
Производство металла можно разделить на две стадии.
- Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
- Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.
Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.
Метод энергозатратный, «кушает» много электричества.
Бывает технический и сверхчистый
Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.
Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.
Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.
Металл для крыльев
Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.
Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.
Природные соединения алюминия
В чистом виде алюминий почти никогда не встречается (исключение могут составлять лишь особые восстановительные условия, образующиеся, к примеру, при выходе магмы из жерл вулканов). Гораздо чаще в земной коре присутствуют его соединения:
- Корунд (минеральные разновидности: рубин, сапфир, падпараджа, звёздчатый рубин, лейкосапфир, обыкновенный корунд и наждак)
- Бёмит.
- Диаспор.
- Хризоберилл (александрит).
- Гиббсит.
- Кианит.
- Каолинит.
- Мусковит.
- Алуниты.
- Анортит.
- Андалузит.
- Нефелины.
- Сподумен.
- Силлиманит.
- Криолит.
- Альбит.
- Отроклаз.
- Берилл.
- Шпинель.
- Полевые шпаты.
- Слюды.
- Бокситы.
- Глинозёмы.
В водоёмах содержание алюминия колеблется в пределах:
- От 0,001 до 10 мг/л – пресноводные бассейны рек и озёр.
- 0,01 мг/л – морская вода.
Применение
Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.
Рассмотрим, как используют различные изделия из алюминия.
Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.
Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.
Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.
Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.
Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.
Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.
При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.
Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.